RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique École Normale Supérieure, Kouba Alger

Département de Mathématiques

MÉMOIRE

Pour l'obtention du grade de

MAGISTER

Spécialité : Mathématiques

Option : Analyse non linéaire

Présenté par : Khaled MAALOUM

Intitulé:

ÉCOULEMENT D'UN GAZ DANS UN MILIEU POREUX - ÉTUDE THÉORIQUE ET NUMÉRIQUE

Soutenu publiquement le ../../2013 à l'E.N.S-Kouba devant le jury composé des professurs

Mr. Youcef Atik E.N.S-Kouba Président

Mr. M. Said Moulay USTHB Examinateur

Mr. El-Habib Sadok Sonatrach Invité

Mr. Abdelaziz Choutri E.N.S-Kouba Examinateur

Mr. Abdelhafid Mokrane E.N.S-Kouba Promoteur

Table des matières

N	otati	ons		6	
In	trod	uction		10	
4	Que	elques	outils de base	15	
	4.1	Espac	e de Sobolev	15	
		4.1.1	Espaces de Sobolev classiques	16	
		4.1.2	Théorème de Lax-Milgram	17	
		4.1.3	Théorème de trace	18	
		4.1.4	Théorème de Riesz	19	
	4.2	Les m	ilieux poreux	20	
		4.2.1	Écoulements dans les milieux poreux	20	
		4.2.2	Propriétés physiques et structurales d'un milieu poreux	21	
		4.2.3	Généralités sur le gaz	22	
Ι	\mathbf{T}	ıéoriq	ue	24	
5	Loi d'écoulement				
	5.1	L'expe	érience de Darcy	26	
		5.1.1	Conclusion du loi de Darcy	26	
		5.1.2	Efficacité de la loi de Darcy	32	
6	Éco	uleme	nt monophasique	35	
	6.1	Écoule	ement monophasique en milieu poreux	3.5	

Notations

	6.2	Équations générales pour écoulement monophasique	40		
	6.3	Équation pour l'écoulement faiblement compressible et de roche $\dots \dots$	40		
	6.4	Équations pour l'écoulement de gaz	42		
	6.5	Conditions aux limites	43		
7	Existence et unicité de solution				
	7.1	Géométrie du domaine	45		
	7.2	Résultat général sur les problèmes paraboliques	51		
	7.3	Théorème d'existence et d'unicité	52		
		7.3.1 Hypothèses	53		
	7.4	Une solution analytique	58		
	7. 7				
II	N	umérique	69		
II 8		umérique t numérique	69 70		
		•			
	Test	t numérique	70		
	Test	t numérique Une simulation numérique par DuMux	70 70		
	Test	t numérique Une simulation numérique par DuMux	70 70 71		
8	Test 8.1	t numérique Une simulation numérique par DuMux	70 70 71 72		
8	8.1 8.2	t numérique Une simulation numérique par DuMux	70 70 71 72 75		
8	Test 8.1 8.2 Con	t numérique Une simulation numérique par DuMux	70 70 71 72 75		

Résumé

Ce travail consiste à étudier l'écoulement d'un gaz dans un milieu poreux, il s'appuie essentiellement sur le livre [1] publié en 2006 par Z. Chen, G. Huan et Y. Ma. On a aussi tiré grand profit du livre [2], publié par G. Chavent et J. Jaffre en 1986.

Dans ce travail, on va reprendre systématiquement toutes les démonstrations pour une modélisation mathématique de phénomène physique, en les détaillants dans l'espoir de les rendre plus claires pour un public plus large. Cela nous amène à rappeler ou à détailler certaines notions fondamentales utilisées (écoulement monophasique dans un milieu poreux, modèles et lois d'écoulement, les espaces de Sobolev, Théorème de Lax-Milgram, conditions aux limites, méthode des éléments finis, méthode des volumes finis,...).

Le mémoire est composé de cinq chapitres : dans le premier on donne quelques résultats classiques concernant les espaces de Sobolev et quelques propriétés physiques d'un milieu poreux (masse volumique, porosité, perméabilité, saturation, pression, pression capillaire, régimes d'écoulement,...).

Dans le second chapitre, on rappelle la loi d'écoulement de Darcy qui établit une relation linéaire entre le débit et la perte de charge :

$$\mathbf{u} = -\frac{1}{\mu} \mathbf{k} (\nabla p - \rho \wp \nabla z).$$

Nous présentons ici l'expérience de Darcy (conclusion du loi) et on y donne aussi l'efficacité de cette loi, ce chapitre donne aussi un certain nombre de lois d'écoulement en milieux poreux comme la loi de Reynolds et la loi de Poiseuille.

Dans le troisième chapitre, on s'intéressera à l'écoulement monophasique en milieu poreux, on donnera l'équations d'écoulements faiblement compressible. Et par suite l'équation de l'écoulement d'un gaz dans un milieu poreux :

$$\frac{\phi\mu c_g}{\mathbf{k}}\frac{\partial p^2}{\partial t} = \Delta p^2 + \frac{2ZRT\mu}{W\mathbf{k}}q,$$

qui est une équation parabolique en p^2 .

Quant à l'existence et unicité de solution de notre équation d'un écoulement monophasique en milieu poreux et son expression analytique (sur $\Omega \subset \mathbb{R}^d$, $(1 \le d \le 3)$) elle sera faite au chapitre 4.

Le cinquième chapitre de ce mémoire est consacré à la simulation numérique. On présente un test numérique, nous utilisons un logiciel libre **DuMuX**, pour faire des simulations numériques d'un écoulement d'un gaz dans un milieu poreux grâce à des paramètre réel de réservoir. Nous terminerons ce travail par une comparaison entre solutions analytique et numérique.

Bibliographie

- [1] Z. Chen, G. Huan, Y. Ma, Computational Methods for Multiphase Flows in Porous Media, Society for Industrial and Applied Mathematics, Texas, 2006.
- [2] G. Chavent, J. Jaffré, Mathematical Models and Finite Elements for Reservoir Simulation, North-Holland, Amsterdam, 1986.