RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique École Normale Supérieure, Kouba Alger Département de Mathématiques

 $N^{\circ}d$ 'ordre: MAG/01/2012

MÉMOIRE

Pour l'obtention du grade de ${\bf MAGISTER}$

SPÉCIALITÉ : **MATHÉMATIQUES** OPTION : **ANALYSE NON LINÉAIRE**

 ${\bf Pr\'esent\'e~par: ABDELAZIZ~HELLAL}$

Intitulé:

SUR L'ÉTUDE DE L'INÉGALITÉ DE LEWY-STAMPACCHIA PAR LA MÉTHODE DE PÉNALISATION

Soutenu publiquement le 04/01/2012 à l'E.N.S-Kouba devant le jury composé de :

Mr Khaled Sadallah	Professeur	E.N.S-Kouba	Président
Mr EL-Hacène Ouazar	Maître de conférence	E.N.S-Kouba	Examinateur
Mr Abdelaziz Choutri	Chargé de cours	E.N.S-Kouba	Examinateur
Mr Abdelhafid Mokrane	Professeur	E.N.S-Kouba	Promoteur

Table des matières

N	otati	ons	7
In	trod	uction	9
0	Quelques résultats d'analyse fonctionnelle		
	0.1	Ordre sur $H^1(\Omega)$. 18
	0.2	Théorèmes d'existence pour les inéquations variationnelles elliptiques	. 29
	0.3	Pénalisation et inéquations variationnelles elliptiques	. 35
1	Enoncé du résultat principal de théorème 1.1		
	1.1	Hypothèses sur l'opérateur	. 42
	1.2	Hypothèses sur l'obstacle et du côté droit	. 43
	1.3	Position du problème	. 44
	1.4	Preuve du Théorème 1.1	. 48
2	Pre	uve de deux résultats d'existence	63
3	Enoncé du résultat principal de théorème 3.1		
	3.1	Hypothèses sur l'opérateur	. 75
	3.2	Hypothèses sur l'obstacle et du côté droit	. 76
	3.3	Position du problème	. 77
	3.4	Lemme de densité pour le cône positif de $W^{-1,p'}(\Omega)$. 78
	3.5	Cas linéaire : preuve simple	. 84
4	Pre	uve du Théorème 3.1	89
\mathbf{A}	A Annexe		108
Bi	bliog	graphie	119

Abstract

We study in this memory the Lewy-Stampacchia's inequality for elliptic variational inequalities with an obstacle different from zero involving fairly Leray-Lions operators, this inequality was proved by a penalization method, using a density lemma which asserts that the positive cone of $W_0^{1,p}(\Omega)$ is dense in the positive cone of $W^{-1,p'}(\Omega)$. This lemma was proved again by a penalization method.

My work is based on the article of A. Mokrane, F. Murat following:

A. Mokrane, F. Murat, A proof of the Lewy – Stampacchia's Inequality

by a Penalization Method, Potential Analysis 9: 105 – 142, (1998).

First of all we treat the linear case with an obstacle different from zero, then we prove the following Lewy-Stampacchia's inequality:

$$\mu = -\Delta u - f \le (f + \Delta \psi)^-,$$

holds in the framework of elliptic variational problem with an obstacle of the type : find a function u which satisfy

$$\begin{cases} \int_{\Omega} DuD(v-u)dx \ge \langle f, v-u \rangle, & \forall v \in K(\psi), \\ u \in K(\psi), \end{cases}$$

where

$$K(\psi) = \{ v \in H_0^1(\Omega) : v \ge \psi \text{ a.e in } \Omega \}.$$

the obstacle ψ , which belongs to $H^1(\Omega)$ which $\psi \leq 0$ on $\partial\Omega$, and the right-hand side f, which are assumed to be such that $g = f + \Delta\psi$ belongs to the space

$$V_2^{\star} = (H^{-1}(\Omega))^+ - (H^{-1}(\Omega))^+.$$

We worked in the so called ordered dual space V_2^{\star} of $H_0^1(\Omega)$.

Key words:

Variational inequalities, penalization, Lewy-Stampacchia's inequality, the existence, ordered dual space.

Résumé

On étudie dans ce mémoire l'inégalité de Lewy-Stampacchia pour les inéquations variationnelles elliptiques avec un obstacle différent de zéro, faisant participer les opérateurs de Leray-Lions assez généraux, cette inégalité a été prouvée par la méthode de pénalisation en utilisant un lemme de densité qui affirme que le cône positif de $W_0^{1,p}(\Omega)$ est dense dans le cône positif de $W^{-1,p'}(\Omega)$. Ce lemme de densité a été aussi prouvé par la méthode de pénalisation.

Mon travail est basé sur l'article de A. Mokrane, F. Murat suivant

A. Mokrane, F. Murat, A proof of the Lewy - Stampacchia's Inequality

by a Penalization Method, Potential Analysis 9: 105 – 142, (1998).

Tout d'abord, on reprend la même démonstration donnée de l'article dans le cas linéaire avec un obstacle différent de zéro, alors on démontre l'inégalité de Lewy-Stampacchia suivante :

$$\mu = -\Delta u - f \le (f + \Delta \psi)^{-},$$

prise dans le cadre d'un problème variationnel elliptique avec un obstacle de type : on cherche une fonction u telle que

$$\begin{cases} \int_{\Omega} DuD(v-u)dx \ge \langle f, v-u \rangle, & \forall v \in K(\psi), \\ u \in K(\psi), \end{cases}$$

οù

$$K(\psi)=\{v\in H^1_0(\Omega):\quad v\geq \psi \ \text{ p.p. dans } \ \Omega\}.$$

l'obstacle ψ appartient à $H^1(\Omega)$ avec $\psi \leq 0$ sur $\partial \Omega$ et la fonction f du membre de droite est telle que $g = f + \Delta \psi$ appartienne à l'espace

$$V_2^{\star} = (H^{-1}(\Omega))^+ - (H^{-1}(\Omega))^+.$$

On a travaillé dans l'espace V_2^{\star} appelé dual d'ordre de l'espace $H_0^1(\Omega)$.

Mots clés:

Inégalités variationnelles, pénalisation, l'inégalité de Lewy-Stampacchia, l'existence, espaces dual d'ordre.

ملخّص

ندرس في هذه المذكرة متراجحة متراجحة ليفي - ستامباكيا) المتعلقة مترس في هذه المذكرة متراجحة متراجحات التغيّرية الناقصية بحاجز غير معدوم، و مرفقة بمؤثرات من نوع Leray – Lions ، متراجحات التغيّرية الناقصية بحاجز غير معدوم، و مرفقة بمؤثرات من نوع عالتها الأكثر شمولا، تبرهن هذه المتراجحة باستخدام طريقة الإعاقة، يعتمد البرهان على كثافة المخروط الموجب للفضاء $W_0^{1,p}(\Omega)$ ، في المخروط الموجب للفضاء $W_0^{1,p}(\Omega)$ التى تم وثباتها كذلك بطريقة الإعاقة نفسها

يتمحور عملنا هذا على مقالــة للأســتاذين ع· مقران و ميرا· ف الأتية : A. Mokrane, F. Murat, A proof of the Lewy – Stampacchia's Inequality by a Penalization Method, Potential Analysis 9: 105 – 142, (1998).

تتمثل مساهتنا في إثبات متراجحة Lewy - Stampacchia ، (ليفي - ستامباكيا) في الحالة الخطية بحاجز غير معدوم التالية :

 $\mu = -\Delta u - f \leq (f + \Delta \psi)^-,$: و التي تأخذ في شكل مسألة تغيّرية ناقصية بحاجز كما يلي u المطلوب إيجاد تابع u يحقّق

$$\begin{cases} \int_{\Omega} DuD(v-u)dx \ge \langle f, v-u \rangle, & \forall v \in K(\psi), \\ u \in K(\psi). \end{cases}$$

حيث $\{\psi \leq 0 \text{ ه. } \psi \in H^1(\Omega) \text{ a. } \psi \leq 0 \}$ و الحاجز $\psi \leq 0$ ه. $\psi \in H^1(\Omega)$ و الحاجز $\psi \leq 0$ ه. $\psi \in W$ مع $\psi \leq 0$ ه. $\psi \in W$ مع $\psi \leq 0$ ه. $\psi \in W$ مع الطرف الأيمن في المتباينة السابقة $\psi \leq 0$ فهو يعرف كما يلي $\psi \leq 0$ مع $\psi \leq 0$ و الطرف الأيمن في المتباينة السابقة $\psi \leq 0$ المتباينة السبق الفضاء الثّنوي المرتب $\psi \leq 0$ المتباينة الشنوي المرتب $\psi \leq 0$ المتباينة ال

الكلمات الفاتحة:

المتراجحات التغيّرية، الإعاقة، متراجحة ليفي و ستامباكيا، الوجود، الفضاء الثّنوي المرتّب.