REPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

N° d'ordre: MAG/.../2013

PRÉSENTÉ A

L'ÉCOLE NORMALE SUPÉRIEURE DE KOUBA-ALGER DÉPARTEMENT DE PHYSIQUE

POUR OBTENIR LE DIPLÔME DE

MAGISTER

SPÉCIALITÉ: PHYSIQUE

OPTION: PHYSIQUE THÉORIQUE

PAR

M. Mohamed GOURIDA

Étude de l'équivalence ensembles canonique et grand canonique pour un système de fermions

Soutenue le : 04 Juillet 2013

Devant la commission d'examen composée de :

Mr D. E. MEDJADI Professeur, ENS-Kouba, Alger Président

Mme F.Z. IGHEZOU Professeur, USTHB, Alger Examinateur

Mr A. LATEF Maître de Conférences, ENS-Kouba, Alger Examinateur

Mr S. KESSAL Professeur, USTHB, Alger Directeur de thèse

Sommaire

Introduction générale	1
CHAPITRE I	
Statistiques quantiques	
Introduction	4
I-1- Théorie des ensembles de Gibbs	5
I-1-1- Ensemble microcanonique	5
I-1-1- Distribution microcanonique	5
I-1-1-2- Grandeurs thermodynamiques	5
I-1-2- Ensemble canonique	6
I-1-2-1- Distribution canonique	7
I-1-2-2- Fonction de partition et grandeurs thermodynamiques	8
I-1-2-3- Fluctuations de l'énergie	10
I-1-3- Ensemble grand canonique	11
I-1-3-1- Distribution grand canonique	11
I-1-3-2- Fonction de partition et grandeurs thermodynamiques	13
I-1-3-3- Fluctuations	14
I-2- Système de fermions	16
I-2-1- Distribution de Fermi-Dirac	16
I-2-2- Courbe de Fermi	17
I-3- Système de bosons	18
I-3-1- Distribution de Bose-Einstein	18
I-4- Limite classique	19

CHAPITRE II

Système de fermions par l'ensemble canonique

Introduction	.21
II-1- Système de fermions à nombre de niveaux d'énergie infini	22
II-1-1- Calcul classique	22
II-1-1- Fonction de partition	22
II-1-1-2- Énergie moyenne	22
II-1-1-3- Capacité calorifique	23
II-1-2- Calcul quantique	23
II-1-2-1- Fonction de partition	23
II-1-2-2- Énergie moyenne	24
II-1-2-3- Capacité calorifique	25
II-2- Système de fermions à nombre de niveaux d'énergie fini	28
II-2-1- Calcul classique	28
II-2-1-1- Fonction de partition	29
II-2-1-2- Énergie moyenne	29
II-2-1-3- Capacité calorifique	29
II-2-2- Calcul quantique	31
II-2-2-1- Fonction de partition	31
II-2-2- Énergie moyenne	32
II-2-2-3- Capacité calorifique	34
II-3- Système de fermions à nombre de niveaux fini où le dernier niveau est dégénéré	37
II-3-1- Système à deux fermions où le dernier niveau est dégénéré deux fois	37
II-3-1-1- Fonction de partition	38
II-3-1-2- Énergie moyenne	38
II-3-1-3- Capacité calorifique	40

II-3-2- Système à deux fermions où le dernier niveau est dégénéré trois fois	41
II-3-2-1- Fonction de partition	41
II-3-2-2- Énergie moyenne	41
II-3-2-3- Capacité calorifique	43
II-3-3- Système à N fermions où le dernier niveau est dégénéré deux fois	45
II-3-3-1- Fonction de partition	45
II-3-3-2-Énergie moyenne	46
II-3-3-3- Capacité calorifique	50
CHAPITRE III	
Équivalence ensembles canonique et grand canonique	
Introduction	54
III-1- Système à nombre fini (m) des niveaux d'énergie contenant N fermions	55
III-1-1- Ensemble canonique	55
III-1-1- Énergie moyenne	55
III-1-1-2- Capacité calorifique	55
III-1-2- Ensemble grand canonique	56
III-1-2-1- Grande fonction de partition	56
III-1-2-2- Énergie moyenne	56
III-1-2-3- Capacité calorifique	56
III-2- Les écarts relatifs	57
III-3- Calculs numériques	58
III-3-1- Système à 21 niveaux d'énergie contenant deux fermions	58
III-3-2- Système à 21 niveaux d'énergie contenant cinq fermions	60
III-3-3- Système à 21 niveaux d'énergie contenant vingt fermions	62

III-3-4- Système à 10001 niveaux d'énergie contenant deux fermions	64
III-3-5- Système à 10001 niveaux d'énergie contenant 100 fermions	65
III-3-6- Système à 10001 niveaux d'énergie contenant 9000 fermions	66
Conclusion générale	. 70
Appendices	. 72
A. Les multiplicateurs de Lagrange	. 72
B. Particules indiscernables	. 73
C. la formule de Stirling	. 74
Références	75

Résumé

Dans ce travail, nous avons étudié un système de fermions sans interactions par l'ensemble canonique, En l'absence d'une expression de la fonction de partition à *N* particules, nous avons cherché une relation de récurrence, ce qui nous permet d'en déduire les grandeurs thermodynamiques. Nous avons pu tracer les variations de l'énergie moyenne et de la capacité calorifique à volume constant en fonction de la température, dans le cas d'un nombre de niveaux d'énergie infini, puis dans le cas où le nombre de niveaux d'énergie est fini. Puis, nous avons effectué la comparaison entre les résultats du calcul classique (particules discernables) avec ceux que nous trouvons par un calcul quantique (particules indiscernables). Ensuite, nous avons étudié l'effet de la dégénérescence du dernier niveau d'énergie sur les propriétés thermodynamiques.

Nous nous sommes intéressés à comparer les résultats obtenus (l'énergie moyenne, la capacité calorifique) par l'ensemble canonique du système de fermions sans interactions à nombre de niveaux d'énergie fini à ceux qui découlent d'un ensemble grand canonique, de même nombre moyen de fermions.

ملخص

في هذا العمل قمنا بدراسة نظام من الفرميونات غير المتأثرة ، بواسطة النظام القانوني، حيث بحثنا على دالة التجزئة بالنسبة لـ N جسيم التي تسمح لنا باستنتاج المقادير الترموديناميكية، وبذلك استطعنا تمثيل تغيرات الطاقة المتوسطة و السعة الحرارية بثبوت الحجم بدلالة درجة الحرارة في الحالتين: حالة نظام فيه عدد مستويات الطاقة لا نهائي وحالة نظام عدد مستويات الطاقة فيه محدود. ثم عملنا على مقارنة نتائج الحساب الكلاسيكي (باعتبار الجسيمات متمايزة) مع ما وجدناه بالحساب الكمي (باعتبار الجسيمات المستوى الأخير للطاقة على الخصائص الترموديناميكية.

اهتممنا كذلك بمقارنة النتائج التي تحصلنا عليها (الطاقة المتوسطة و السعة الحرارية بثبوت الحجم) بواسطة النظام القانوني لنظام من الفرميونات غير المتأثرة له عدد محدود من مستويات الطاقة، مع النتائج التي تعطيها الدراسة بواسطة الطاقم القانوني الكلي لنظام له نفس العدد المتوسط من الفر مبونات.