RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique École Normale Supérieure, Kouba- Alger

Département de Mathématiques

MÉMOIRE

Pour l'obtention du grade de

MAGISTER

 ${\tt SP\'ECIALIT\'E}: \textbf{MATH\'EMATIQUES}$

OPTION : ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Présenté par : HOURIA ADJAL

Sous la direction du professeur : ${f TENIOU\ DJAMEL\ EDDINE}$

Recouvrement du potentiel à partir de données de Cauchy partielles.

Soutenu le 02-06-2010 à l'E.N.S-Kouba devant la commission d'examen :

Mr. A. Mokrane	Professeur	E.N.S-Kouba	Président.
Mr. D. Teniou	Professeur	U.S.T.H.B	Rapporteur.
Mr. M. Bousselsal	Professeur	E.N.S-Kouba	Examinateur.
Mr. H. Ouazar	Maître de conférence	E.N.S-Kouba	Examinateur.

Table des matières

N	otations			
In	trod	uction		5
1	Rappels, et notations			12
	1.1	Notion	ns de géométrie différentielle	. 12
		1.1.1	Régularité des ouverts de \mathbb{R}^n	. 12
		1.1.2	Définition	. 13
	1.2	Formu	ıle de Green	. 13
		1.2.1	Théorème de la divergence	. 14
		1.2.2	Formule de Green	. 14
	1.3	1.3 Les espaces L^p		. 15
	1.4			. 16
		1.4.1	Les espaces $H^s(s \in \mathbb{R})$. 16
		1.4.2	Théorème de trace dans $\mathrm{H}^m(\Omega)$. 18
		1.4.3	Retour sur la formule de Green	. 19
2	Introduction et énoncé du résultat principal		21	
	2.1	Descri	iption mathématique du problème	. 21
	2.2	Résult	tat d'unicité	. 22
3	Pro	Propriétés de l'espace $H_{\Delta}(\Omega)$		
	3.1	Trace	des fonctions dans $H_{\Delta}(\Omega)$. 26

	3.2	Formule de Green dans $H_{\Delta}(\Omega)$	32		
4	Esti	Estimations de Carleman			
	4.1	Inégalités de Carleman	34		
		4.1.1 Introduction	34		
		4.1.2 Inégalités de Carleman	34		
		4.1.3 Preuve de la proposition	35		
5	Solı	itions "optique géométrique" pour l'équation de Schrödinger	39		
	5.1	Introduction	39		
	5.2	Construction de solutions "optique géométrique" à l'aide d'une inégalité			
		de Carleman	40		
6	Recouvrement d'un potentiel à partir de données partielles de Cau-				
		chy	45		
	6.1	Quelques notations	45		
	6.2	Résultats d'unicité	46		
		6.2.1 Preuve du théorème	46		
		6.2.2 Preuve du corollaire	49		
		6.2.3 Conclusion	52		
		I ANNEXES	53		
\mathbf{A}	Pot	tentiels	54		
	A.1	Définition du potentiel en général	54		
	A.2	Potentiel Newtonien	55		
	A.3	Potentiel logarithmique	56		
В	Équ	ation de mouvement	58		
	B.1	Équation de Schrödinger	58		
		B.1.1 Mise en place d'équation de Schrödinger	58		

		B.1.2	États stationnaires	59
		B.1.3	Cas limite de la mécanique classique	61
C La formule de Kadlec				63
	C.1	La pre	uve de la formule	63
		C.1.1	En dimension 2 sur le disque	63
		C.1.2	En dimension 2 sur un ouvert quelconque	67
		C.1.3	En dimension 3	68
		C.1.4	En dimension $n > 3$	72
Bi	bliog	graphie		74

Résumé

Dans ce mémoire , nous étudions un problème inverse concernant l'équation de Schrödinger $\Delta-q$, posée dans un domaine borné, avec potentiel q.

Soit $n \geq 3$ et $\Omega \subset \mathbb{R}^n$ un domaine borné avec une frontière de classe C^2 . Donnons $q \in L^{\infty}(\Omega)$, nous considérons le problème aux limites suivant :

$$\begin{cases} (\Delta - q)u = 0 & \operatorname{dans} \Omega \\ u_{|\partial\Omega} = f, \end{cases}$$

où $f \in H^{\frac{1}{2}}(\partial\Omega)$. Supposons que 0 n'est pas une valeur propre de $\Delta - q$ dans Ω alors notre problème a une solution unique $u \in H^1(\Omega)$, la définition habituelle de l'opérateur de Dirichlet-Neumann est donné par :

$$\Lambda_q(f) = \frac{\partial u}{\partial \nu}|_{\partial \Omega}$$

où $\frac{\partial u}{\partial \nu} = \nabla u \cdot \nu$ et ν est la normale extérieure à $\partial \Omega$. Le problème inverse posé est alors de déterminer le potentiel q à partir de Λ_q .

On définit $H_{\Delta}(\Omega)$ par :

$$H_{\Delta}(\Omega) = \{ u \in \mathcal{D}'(\Omega), u \in L^2(\Omega), \Delta u \in L^2(\Omega) \}$$

 $H_{\Delta}(\Omega)$ est un espace de Hilbert avec la norme :

$$||u||_{H_{\Delta}(\Omega)}^2 = ||u||_{L^2(\Omega)}^2 + ||\Delta u||_{L^2(\Omega)}^2.$$

On définit alors l'ensemble des données de Cauchy partielles :

$$C_{q,\epsilon} = \{(u_{|\partial\Omega}, \frac{\partial u}{\partial \nu}|_{\partial\Omega -, \epsilon(\xi)}); u \in H_{\Delta}(\Omega), (\Delta - q)u = 0 \ dans \ \Omega\}$$

Dans ce mémoire on montre qu'en dimension $n \geq 3$ la connaissance des données de Cauchy pour l'équation de Schrödinger sur des sous ensemble de la frontière

détermine le potentiel de manière unique.

Nous nous basons essentiellement sur l'article de Bukhgein-Uhlmann [6].

Mots clés : Problème inverse de conductivité, problème inverse de l'équation de Schrödinger, la tomographie d'impédance électrique, solutions "optique géométrique", problèmes inverses.

Abstract

In this paper, we study an inverse problem for the Schrödinger equation $\Delta - q$, posed in boundary domain with potential q. Let $n \geq 3$ and $\Omega \subset \mathbb{R}^n$ a bounded domain with C^2 boundary. Given $q \in L^{\infty}(\Omega)$, we consider the following boundary problem:

$$\begin{cases} (\Delta - q)u = 0 & \operatorname{dans} \Omega \\ u_{|\partial\Omega} = f. \end{cases}$$

where $f \in H^{\frac{1}{2}}(\partial\Omega)$. If we suppose that 0 is not an eigenvalue of $\Delta - q$ in Ω , then our problem have an unique solution $u \in H^1(\Omega)$. The usual definition of the Dirichlet-Neumann operator is given by :

$$\Lambda_q(f) = \frac{\partial u}{\partial \nu}|_{\partial \Omega}$$

where $\frac{\partial u}{\partial \nu} = \nabla u \cdot \nu$ and ν is the unit-outer normal to $\partial \Omega$. The inverse problem posed is then to determine the potential q from Λ_q .

We define $H_{\Delta}(\Omega)$ by :

$$H_{\Delta}(\Omega) = \{ u \in \mathcal{D}'(\Omega) \mid u \in L^2(\Omega), \Delta u \in L^2(\Omega) \}$$

 $H_{\Delta}(\Omega)$ is a Hilbert space if equipped with the scalar product which gives the norm:

$$||u||_{H_{\Delta}(\Omega)}^2 = ||u||_{L^2(\Omega)}^2 + ||\Delta u||_{L^2(\Omega)}^2$$

We define the set of partial Cauchy data:

$$C_{q,\epsilon} = \{(u_{|\partial\Omega}, \frac{\partial u}{\partial \nu}|_{\partial\Omega -, \epsilon(\xi)}); u \in H_{\Delta}(\Omega), \ (\Delta - q)u = 0 \ dans \ \Omega\}.$$

In this paper showing that in dimention $n \geq 3$ the knowledge of Cauchy data for Schrödinger equation, on the subset of the boundary determine, the potential uniquely.

We rely primarily on the article: Bukhgein-Uhlmann [6].

 ${\bf Key\ words}$: Inverse conductivity equation, inverse problem of Schrödinger equation, electrical impedance tomography, geometrical optic solutions, inverse problems .