Chapter 3

Existence of solution to Burgers

equation in a non-parabolic domain

In this chapter, we study the Burgers equation with time variable coefficients, subject to
boundary condition in a non-parabolic domain. Some assumptions on the boundary of
the domain and on the coefficients of the equation will be imposed. The right-hand side
of the equation is taken in L?. The method we used is based on the approximation of
the non-parabolic domain by a sequence of subdomains which can be transformed into
regular domains. This work is an extension of the Burgers problem in domain that can

be transformed into rectangle presented in Chapter 2.
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3.1. Introduction Chapter 3. Burgers equation in a non-parabolic domain

3.1 Introduction

We consider the boundary value problem for the non homogeneous Burgers equation

Owu(t, z) + c(t)ult, ©)O u(t, x) — O*u(t,x) = f(t,x) (t,z) € Q,

(3.1)
u(t7¢1(t)) = u(t7902(t)) =0 te (OvT)a
in Q C R2, where
Q={(t,x) eR* 0<t<T, z€l},
I ={z € R; ¢1(t) <z < pat), t €]0,T[},
with
©1(0) = 2(0). (3.2)

T is a positive number, f € L*(Q) and c(t) is given. The functions ¢, ¢y are defined on
[0, 7], and belong to C'(0,T).

The most interesting point of the problem studied in this chapter is the fact that
©1(0) = ¢2(0), because the domain is not rectangular and cannot be transformed into a
regular domain without the appearance of some degenerate terms in the equation.

We look for some conditions on the functions c(t), ¢1(t) and @o(t) such that
admits a unique solution u belonging to the anisotropic Sobolev space H'2(Q).

We assume that there exist positive constants c¢; and co, such that

1 <c(t) <cy, forallte(0,7T), (3.3)

and we note that
p2(t)

1/2
fulloag = ([ Tutt.0) ds) "

e1(t)

[ull oo (1) = suplu(t, z)].
€l

To establish the existence of a solution to (3.1)), we also assume that
' (t)| <~ foralltel0,T], (3.4)

where 7 is a positive constant and ¢(t) = pa(t) — 1 (t) for all ¢ € [0,T].
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3.1. Introduction Chapter 3. Burgers equation in a non-parabolic domain

Remark 3.1. Once problem (3.1)) is solved, we can deduce the solution of the problem

ou(t, z) + a(t)u(t, v)0uu(t, ) — b(t)0?u(t,z) = f(t,x) (t,x) € Q,

u(t, p1(t)) = ult, 2(t)) =0t € (0,T).

(3.5)

Indeed, consider the case where a(t) and b(t) are positive and bounded functions for all
te0,77].
Let h be defined by h : [0,T] — [0,1"]

h(t) = ]b(S)ds,

we put V; = p; o h=! where i = 1,2. Using the change of variables
t'=nht), vt z)=ut ) (3.6)
(3.5) becomes equivalent to (3.1), because it may be written as follows

Opv(t' ) + c(t)o(t, 2)0v(t' 2) — vt 2) = g(t',2) (' z) € X,

(', () = o', a(t) =0, 1" € (0,77,

t
where c(t') = @, gt z) = Y ={{t,2)eR* 0<t/ <T, €y} and T' =

For the study of problem we will follow the method used in [42], which consists in
observing that this problem admits a unique solution in domains that can be transformed
into rectangles, i.e., when ¢1(0) # ©2(0).

When ¢; and @y are monotone near 0, we solve in Section the problem in a
triangular domain: We approximate this domain by a sequence of subdomains (£2,,)nen-

Then we establish an a priori estimate of the type

unllinei,y < Kl fallizgn < Kl flI72),
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3.2. Proof of Theorem m, Case 1 3. Burgers equation in a non-parabolic domain

where u,, is the solution of (3.1)) in €2, and K is a constant independent of n. This
inequality allows us to pass to the limit in n. Section is devoted to problem (3.1 in
the case when ¢; and ¢y are monotone on (0,7).

The main result of this chapter is as follows:

Theorem 3.2. Assume that ¢ and (¢;(t))i=12 satisfy the conditions (3.2)), (3.3)) and (3.4).
Then, the problem

ou(t, z) + c(t)u(t, 2)0pult, v) — u(t,xz) = f(t,x) (t,x) € Q,

u(t7 901{75)) = u(t7 902(75)) =0 te (OvT)a

admits in the triangular domain Q a unique solution v € H?(Q) in the following cases:
Case 1. ¢y (resp @) is a decreasing (resp increasing) function on (0,T).

Case 2. p (resp ¢3) is a decreasing (resp increasing) function only near 0.

Theses cases will be proved in Section [3.2] and Section respectively.

3.2 Proof of Theorem [3.2], Case 1

Let
Q:{(t,x)€R2:0<t<T,x€It},
L={zxeR:pi(t) <x<pt), t€ (0,7},

with ¢1(0) = ¢2(0) and p1(T) < @o(T).

For each n € N*, we define

1
Qn:{(t,x)eR2z—<t<T,xelt},

n

and we set f, = fio,, where f is given in L?(€2). By Theorem 2.9 there exists a solution
u, € H"*(Q,) of the problem
Oty (t, ) + c(t)un (t, 1) 0pun (t, x) — OPu,(t,z) = fo(t,x) (t,2) € Qy,
un(,2) =0, @1(3) <z < pa3), (3.7)
un(t, @1(t)) = unlt, g2(t)) =0t € [, T1,
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3.2. Proof of Theorem m, Case 1 3. Burgers equation in a non-parabolic domain

in Q,,.

x:ipg(”
/
i Q.7 R
B [l / = T i
i

Figure 3.1: A non parabolic domain

To prove Case 1 of Theorem , we have to pass to the limit in (3.7). For this purpose

we need the following result.

Proposition 3.3. Under the assumptions of Theorem[3.3, there exists a positive constant
K independent of n such that

unllirei,y < Kl fallZzg. < KIflIZ20)-
To prove this proposition we need some preliminary results.

Lemma 3.4. There exists a positive constant K, independent of n such that

||unH%2(Qn) < K1||aw“n||2L2(Qn)7 (3.8)

10swnllZ2 0, < Kill fullZz - (3.9)
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3.2. Proof of Theorem m, Case 1 3. Burgers equation in a non-parabolic domain

Proof. We have

x

lu,|? = ’/asunds

v1(t)

< (2= (1)) / 0511, |? ds.

w1(t)

2

Integrating from ¢4 (t) to ¢o(t), we obtain

p2(t) w2(t)

/ u,|? dz < / (x — (1)) / 105, |*ds | da,
e1(t) e1(t) e1(t)
hence
p2(t) P2(t) p2(t)
/ |un|? dz < (@2(t) — @1 () / / 0, |* dz dz,
e1(t) e1(t) 1(t)
and
2(t) w2(t)

/ a2 d < (2a(t) — 1 (8))? / D2 e
p1(t) p1(t)

Then, there exists a positive constant K; independent of n such that
2 2
[unllz2y < KillOwtnllzar,),

1
integrating between — and 7" we obtain inequality ((3.8]).
n
Now, multiplying both sides of (3.7) by w,, and integrating between o1 (t) and ¢s(t),

we obtain

©2(t) ©2(t) w2(t) w2(t)

1d

p1(t) »1(t) p1(t) e1(t)

Integration by parts gives

a(t) e2(t)
c(t) / Optnu? dz = ? 0z (un)® dz = 0;
e1(t) e1(t)
then
Pa(t) Pa(t) Pa(t)
%% / u? do + / (Opu,)* da = fnu, dz. (3.10)

1(t) v1(t) w1(t)
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3.2. Proof of Theorem m, Case 1 3. Burgers equation in a non-parabolic domain

By integrating (3.10) from + to 7', we find that

T
1
STy + [ 1orta(9) sy s
1/n

T
< / 1) 2ty et () 220 .

1/n

Using the elementary inequality

2

£y + ;—, Vr,s € R, Ve > 0, (3.11)
€

<
sl < £

with e = K, we obtain

T

1

Sl ) s + [ Norta()ry s
1/n

T T
Kl 2 1 2
<5 [ 15 ds + g [ Tun()lEag ds.

1/n 1/n

Thanks to (3.8)), we have

T T
1 2 1 2
s [ MunlBegds < 5 [ 10snlsy ds

1/n 1/n

therefore

T T
(T 2) [ agr + / 10sttn ()22, ds < I, / 1 (3)[22(1 s,

1/n 1/n
consequently

]

Corollary 3.5. There exists a positive constant Ky independent of n, such that for all

telt, T,

T
Oty + [ 1020 (5) By ds < Ko

1/n
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3.2. Proof of Theorem m, Case 1 3. Burgers equation in a non-parabolic domain

Proof. Multiplying both sides of (3.7) by 0%u,, and integrating between ;(t) and o(t),

we obtain
1 d Pa(t) wa(t)
3% (Opuy)*da + / (02u,)* dx
w1(t) @1(t)
w2(t) w2(t) (3.12)
- — / fnO%u, dz + c(t) / Uy, Ot 021y, dx.
w1(t) w1(t)
1
Using Cauchy-Schwarz inequality, (3.11)) with e = 3 leads to
Pa(t) p2(1) Y2/ et 12
/ [nO%u, dz| < / |0%u,, |* do / | f]? da
1(¢) @1(t) @1(t) (313)

2(t)

. p2(t)
1 / |02, |* dz + / | f]? dav.
1(t)

w1(t) @

IA

Now, we have to estimate the last term of (3.12). An integration by parts gives

p2(t) p2(t)

/unﬁxunﬁgundx = /un&g (%(@un)?) dz

p1(t) ©1(t)
. w2(t)
= —= Oy Uy, 3 de.
5 [ G
©1(t)

w2 (t)
Since 0, u,, satisfies / O,u, dr = 0 we deduce that the continuous function 0 u,, is

p1(t)
zero at some point £(t) € (p1(t), p2(t)), and by integrating 20,u,0*u, between £(t) and

x, we obtain

2 / D5t 0%, ds = /85(85%)2 ds = (Opuy)?,
() ()
the Cauchy-Schwartz inequality gives

”arunH%w(It) < ZHaxunHLQ(It)Haa%un”LQ(It)a
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3.2. Proof of Theorem m, Case 1 3. Burgers equation in a non-parabolic domain

but

Ha:vunn?ii?(lt) < HazunH%%It)||aﬂcun||L°°(1t)’

so, (3.1]) yields

p2(t) p2(t) 14 p2(t) 5/4
/ c(t)unOptin02u, dz| < / |02, |* dz al? / |0y, |* dz
1(t) e1(t) #1(t)
. o - AP |B| p
Finally, by Young’s inequality |AB| < , with 1 < p <ooandp = T
p p—
4
choosing p = 4 (then p’ = g)
1/4
/ 0%u,,|* dx
e1(t)
and ‘4
P2t /
B=|c"° / [Opun|?da |,
e1(t)

the estimate of the last term of (3.12)) becomes

®a(t)

/ c(t)unOptin, 021, dz

1(t)

(3.14)
P(t) p2(t) o

1
SZ / |8§un|2d:p—|——c§/3 /|8 u,|* dz

w1(t) @1(t)

1
Let us return to (3.12): By integrating between — and ¢, from the estimates (3.13)) and
n
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3.2. Proof of Theorem m, Case 1 3. Burgers equation in a non-parabolic domain

(3.14)), we obtain

1
ol + [ 1080 (5) B s

1/n

" t
1
§+1/|’a§un(5)\|i2(m ds—l—/an(S)H%mt)dS

1/n 1/n
/||82un )“LQ (It) d8+ 04/3/”81 Unp, ||10/3
1/n 1/n

then

1Osttn Zacry + / 1020 (5)] |2 s

1/n
t

3 4/3 5/3
<2 / s s+ 5 [ (10n(s) o) ds
1/n 1/n

fn € L*(Q,), then there exists a constant c3 such that

1Bt 22s + / 10200 (5)22 1, s

1/n
t

3 4/3 2/3
et 5ol [ (106 ) Nown(s) sy s
1/n

Consequently, the function

P(0) = [0snlFay + [ 10200 ) gry
1/n
satisfies the inequality
t

o) <ot [ (S 0ants)1 1, ) elo)ds,
1/n
Gronwall’s inequality shows that

t

() < ey exp / 2 3 Dyun(s) |22, ds
1/n
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3.2. Proof of Theorem m, Case 1 3. Burgers equation in a non-parabolic domain

¢
According to Lemma [3.4] the integral / ||8$un||4L/2?E It)ds is bounded by a constant inde-

1/n
pendent of n. So there exists a positive constant K5 such that

T
oy + [ 102 (5) sy ds < K

1/n
m
Lemma 3.6. There exists a constant K3 independent of n such that
10¢tn 13200,y + 102unllZ20,) < Ksll fallZ2(q,)-
Then Theorem [3.3]is a direct consequence of Lemmas [3.4] and [3.6]
Proof. To prove Lemma we develop the inner product in L*(€,),
||fn||%2(§2n) - (atun + C(t>unaxun - aguna atun + C(t)unaxun - aiun)L%Qn)
= [10unl 2, + 107unl 2 + () tundpunl|72(q,)
- 2(atum azun>L2(Qn) + 2(atum C(t>unamun)L2(Qn)
- 2(C(t)unaxuna azun)LQ(Qn)a
S0,
HﬁtunH%%Qn) + HaiunHiz(Qn)
= anH%Q(Qn) - ”C(t)unaxunH%Q(Qn) + 2(c(t) unOptin, agun)Lz(Qn) (3.15)
— 2(Otny,, () Optin) L2(02,) + 2(Otiys, aﬁun)LQ(Qn).
Using (3.3) and (3.11)) with ¢ = 1/2, we obtain
1
|_2(atum C(t)unarun)LQ(Qn)‘ < 5”&5%@”%2@”) + 2C§||unaxun||%2(ﬂn)v (3.16)
and
2 2 2 Lo 1o
|2(C(t)un8wum aﬂ}un)LQ(Qn)‘ < 202||un8wun||L2(Qn) + §||axun||L2(Qn)- (3.17)
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3.2. Proof of Theorem m, Case 1 3. Burgers equation in a non-parabolic domain

Now calculating the last term of (3.15),

T 2(t) T
(8tun,8§un)Lz(Qn) = — / / 0y (Op i) Oty dxdt + / [0y, Oy un]?g) dt
1/n ¢1(t) 1/n
T @2(t) T
:_% / / Oy (Ou,)? dndlt + / Outtn Dy, ]2 dt
1/n 1(t) 1/n
w2(t) T
1 2 T w2(t)
_ _5[ / (Dwty) dx} . / O] 20
O 1/n
w2(T) p2(1/n)
_ ! / (Opun)*(T, x) d:zc—k1 / (Ozu )2(l x)dx
2 ’ 2 A
1(T) e1(1/n)

+ / Orun (t, pa2(t)) Optin (t, wo(t)) dt

1/n

— / gt (t, 01 (1)) Opuin (t, o1(t)) dt.

1/n

According to the boundary conditions, we have

atun(tv Qpi(t)) + Qofi(t)aﬂcun(t @i(t)) =0, =12,

SO
. w2(T) T
Ot )0y = =5 [ @) () e = [ (0 @rualt ) e
1(T) 1/n
T
n / (1) Dot (t, 1 (1)),
1/n

it follows that
(O, O2uy) < 0. (3.18)
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3.2. Proof of Theorem m, Case 1 3. Burgers equation in a non-parabolic domain

From (3.16)), (3.17) and (3.18)), (3.15) becomes
||8tun||%2(9n) + HagunH%%Qn)
1
< ||fn”%2(9n) + §||3tun||%2(gn)
1
+ §Ha§unH%2(Qn) + 5C§Hunaxun‘|3:2(§zn)a

then
|10stn |20,y + [105unlliz(,) < 20l fall T2,y + 1063 ][ Undutinll72(q,)- (3.19)

On the other hand, using the injection of HJ(I;) in L>(I;), we obtain

T #2(t) p2(t)
//un(? uy,)? dz dt </ [t |7 o 1, / |0pun|? dx | dt
/ni(t) 1/" e1(t)

< / a2 Nt 21

1/n

S ||u71||2 ( THl )Ha un||L2 Qn))

. 2 .
According to Corollary e ]| (L s (1) is bounded, then by (3.9) and (3.19)), there

exists a constant K3 independent of n, such that

101220, + 1070l T2y < Ksll fullZ2(o,)-

However,
1 fallZ2 0, < 111220y

then, from lemmas [3.4] and [3.6] , there exists a constant K independent of n, such that

unllzrei,y < Kl fullZz,) < Kl flIZ2)-

This completes the proof. O

Existence and uniqueness

Choose a sequence (£2,),en of the domains defined previously, such that Q, C Q, as

n — 400 then Q,, — €.
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3.2. Proof of Theorem m, Case 1 3. Burgers equation in a non-parabolic domain

Consider u,, € H"*(,) the solution of
gty (t, ) + c(t)un(t, ©)Opun(t, x) — OPu,(t, x) = fo(t,x) (t,2) € Qy,
un(y,2) =0 @1(3) <z <ea(3),
un(t, Q1)) = unlt, p2(t)) =0t €], T1.
We know that a solution u, exists by the Theorem 2.9. Let w, be the extension by zero

of u, outside €2,,. From the proposition [3.3| results the inequality
[ 1720y + 10| 720 + 102Un 1220,y + 10201720y < ClIf1Z20)-

This implies that u,, d;u, and &u,, j = 1,2 are bounded in L?(2,), from Corollary
U0y, is bounded in L?(Q,). So, it is possible to extract a subsequence from wu,,, still
denoted wu,, such that

o, — Oy weakly in - L*(Q),

O, — O2u  weakly in  L*(Q),
UnOptty, — udpu  weakly in L*(Q).

Then u € H"?() is solution to problem (3.1)).

For the uniqueness, let us observe that any solution u € H'?(Q) of problem is in
L>(0,T, H(I;)). Indeed, by the same way as in Corollary we prove that there exists
a positive constant K such that for all ¢t € [0, 7]

T
ol + [ 1020(5) g s < K
0

Let uy,ups € HY?(Q) be two solutions of (2.3). We put u = u; — uy. It is clear that
u € L>(0,T, H}(I;)). The equations satisfied by u; and uy leads to
p2(t)
/ [Oruw + c(t)uwdyuy + c(t)ugwdyu + Opud,w] dx = 0.
»1(t)

Taking, for t € [0,T], w = u as a test function, we deduce that

1d
——HUH%%A) + Haﬂqu%Q(It)

2dt
p2(t) w2(t) (3.20)
= —c(t) / u?0puy dx — c(t) / uguOzu dz.

p1(t) e1(t)
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3.3. Proof of Theorem m, Case 2 3. Burgers equation in a non-parabolic domain

An integration by parts gives

p2(t) wa(t)

c(t) / u?O,uy dr = —2c(t) / ud,uuy dz,
e1(t) e1(t)
then ([3.20) becomes
P2(t)
1d 5
ey + 190y = [ (@01 — wud,uda,
p1(t)
By (3.3) and inequality (3.11]) with € = 2, we obtain

p2(t)
} / c(t)(2ur — uz)ud,udz|

1(t)

1
< _CQ(QHUIHLOO (0,1,HE (1)) T ||u2||L°° 0,7, H (1) ) ||U||L2 () T 10, uHL?(It
4

So, we deduce that there exists a non-negative constant D, such as

1d

5 elluliEaqy < Dllulag,,

and Gronwall’s lemma leads to w = 0. This completes the proof of Theorem Case 1.

3.3 Proof of Theorem [3.2] Case 2

In this case we set 2 = Q1 U Q2 UT'y, where

QI:{(t,x)ER2:O<t<T1,JIEL&},
{( 1) ER*: Ty <t<T, z€l},

={(T,z) eR*: € Ip},

with 73 small enough. f € L*(Q) and f; = fio,, 1 = 1,2.

Theorem [3.2] Case 1, applied to the domain @, shows that there exists a unique
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3.3. Proof of Theorem m, Case 2 3. Burgers equation in a non-parabolic domain

solution u; € H?(Q;) of the problem

Opuy (t, ) + c(t)us (t, 2)Opus (t, 1) — Oy (¢, 1)
= fi(t,z) (t,2) € Qu,
ur(t, o1(t)) = ur(t, pa(t)) =0 t € (0,17).
Lemma 3.7. Ifu e HY ((T1,T) x (0,1)), then up—p, € H ({1} x (0,1)).
The above lemma is a special case of [34, Theorem 2.1, Vol. 2]. Using the transfor-

mation [T, 7] x [0,1] = Qa,

(t,2) = (ty) = (L, (p2(t) — 2 ()7 + pa (1))
we deduce from Lemma [3.7] the following result.
Lemma 3.8. Ifu € H'?(Qy), then ujpr,, € H'(I'p,).

We denote the trace uyp, by ug which is in the Sobolev space H 1(T'z,) because
uy € H'?(Q1).
Theorem 2.9 applied to the domain @), shows that there exists a unique solution uy €
H'2(Q,) of the problem
Opun(t, ) + c(t)ua(t, £)Opus(t, v) — Pus(t, x) = fo(t,z) (t,2) € Qo,
ug(T1,2) = up(x) ©1(Th) < x < @o(T7),
us(t, p1(t)) = ua(t, p2(t)) =0 ¢ € [T1, T},
putting
Uy in Ql)
Uz in Q27
we observe that u € H?(Q) because Uijry, = Uzjry, and is a solution of the problem
Ou(t, z) + c(t)u(t, v)0ul(t, v) — 2u(t,x) = f(t,x) (t,z) € L,

u(t, p1(t)) = ult,pa(t)) =0 1€ (0,7).

We prove the uniqueness of the solution by the same way as in Case 1.
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