Chapter 2

Existence of solutions to Burgers equation in domain that can be transformed into rectangle

In this chapter, we consider a non homogeneous Burgers problem with time variable coefficients subject to Cauchy-Dirichlet boundary conditions in a non rectangular domain. This domain will be transformed into a rectangle by a regular change of variables. The right-hand side of the equation is taken in L^2 , and the initial condition is in the Sobolev space H_0^1 . The goal is to establish the existence, the uniqueness and the regularity of the solution.

2.1 Existence of solutions to a parabolic problem with variable coefficients in a rectangle

In this section, we consider the semilinear parabolic problem

$$\begin{cases} \partial_t u(t,x) + p(t)u(t,x)\partial_x u(t,x) - q(t)\partial_x^2 u(t,x) + \\ r(t,x)\partial_x u(t,x) = f(t,x) \ (t,x) \in R, \\ u(0,x) = u_0(x) \quad x \in I, \\ u(t,a) = u(t,0) = 0 \quad t \in (0,T), \end{cases}$$
(2.1)

in the rectangle $R = (0,T) \times I$ where I = (0,a), $a \in R^+$ (T is a positive finite number); $f \in L^2(R)$ and $u_0 \in H_0^1(I)$ are given functions.

We assume that the functions p, q depend only on t and the function r depends on tand x. We also suppose that there exist two positive constants α and β , such that

$$\alpha \le p(t) \le \beta, \qquad \alpha \le q(t) \le \beta, \qquad \forall t \in [0, T]$$

and $|\partial_x r(t, x)| \le \beta$ ou $|r(t, x)| \le \beta \qquad \forall (t, x) \in R.$ (2.2)

In a paper by Morandi Cecchi *et al.* [37], the main result was the existence and uniqueness of a solution to the Burgers problem (with constant coefficients) in the anistropic Sobolev space

$$H^{1,2}(R) = \left\{ u \in L^2(R) : \partial_t u \in L^2(R), \ \partial_x u \in L^2(R), \ \partial_x^2 u \in L^2(R) \right\}$$

where R is a rectangle. The authors used a wrong inequality (namely $\int_{\Omega} M(u-M)^+(t) dx \leq M ||(u-M)^+(t)||^2$) at the end of the proof of Theorem 2 (maximum principle); the inequality appears in the line 14, page 165 (and line 15 page 167). To rectify this part of the proof it suffices to show that $u \in L^{\infty}(Q)$. The proof given by the authors remains true only when f = 0 (but this was not the objective of their paper), this case being treated by Bressan in [9]. However, in our work, using another method, we prove a more general result concerning the existence, uniqueness and regularity of a solution to the Burgers problem with variable coefficients in a rectangle.

The main result of This section is as follows:

Theorem 2.1. If $u_0 \in H_0^1(I)$, $f \in L^2(R)$ and p, q, r satisfy the assumption (2.2), then Problem (2.1) admits a unique solution $u \in H^{1,2}(R)$.

2.1.1 Resolution of the parabolic problem (2.1)

The proof of Theorem 2.1 is based on the Faedo-Galerkin method. We introduce approximate solution by reduction to the finite dimension. By the Faedo-Galerkin method, we obtain the existence of an approximate solution using an existence theorem of solutions for a system of ordinary differential equations. We approximate the equation of Problem (2.1) by a simple equation. Then we make the passage to the limit using a compactness argument.

Multiplying the equation of Problem (2.1) by a test function $w \in H_0^1(I)$, and integrating by parts from 0 to a, we obtain

$$\int_{0}^{a} \partial_{t} uw \, \mathrm{d}x + q(t) \int_{0}^{a} \partial_{x} u \partial_{x} w \, \mathrm{d}x + p(t) \int_{0}^{a} u \partial_{x} uw \, \mathrm{d}x + \int_{0}^{a} r(t, x) \partial_{x} uw \, \mathrm{d}x$$

$$= \int_{0}^{a} fw \, \mathrm{d}x, \ \forall w \in H_{0}^{1}(I), \quad t \in (0, T).$$
(2.3)

This is the weak formulation of Problem (2.1). The solution of (2.3) satisfying the conditions of Problem (2.1) is called *weak solution*.

To prove the existence of a weak solution to (2.1), we choose the basis $(e_j)_{j \in \mathbb{N}^*}$ of $L^2(I)$ defined as a subset of the eigenfunctions of $-\partial_x^2$ for the Dirichlet problem

$$-\partial_x^2 e_j = \lambda_j e_j, \quad j \in \mathbb{N}^*,$$
$$e_j = 0 \quad \text{on } \Gamma = \{0, a\}.$$

More precisely,

$$e_j(x) = \frac{\sqrt{2}}{\sqrt{a}} \sin \frac{j\pi x}{a}, \quad \lambda_j = (\frac{j\pi}{a})^2, \quad \text{for } j \in \mathbb{N}^*.$$

As the family $(e_j)_{j \in \mathbb{N}^*}$ is an orthonormal basis of $L^2(I)$, then it is an orthogonal basis of $H^1_0(I)$. In particular, for $v \in L^2(R)$, we can write

$$v = \sum_{k=1}^{\infty} b_k(t) e_k,$$

where $b_k = (v, e_k)_{L^2(I)}$ and the series converges in $L^2(I)$. Then, we introduce the approximate solution u_n by

$$u_n(t) = \sum_{j=1}^n c_j(t)e_j,$$
$$u_n(0) = u_{0n} = \sum_{j=1}^n c_j(0)e_j,$$

which has to satisfy the approximate problem

$$\begin{cases} \int_{0}^{a} (\partial_{t}u_{n} + p(t)u_{n}\partial_{x}u_{n}) e_{j} dx + q(t) \int_{0}^{a} \partial_{x}u_{n}\partial_{x}e_{j} dx \\ + \int_{0}^{a} r(t,x)\partial_{x}u_{n}e_{j} dx = \int_{0}^{a} fe_{j} dx, \\ u_{n}(0) = u_{0n}. \end{cases}$$

$$(2.4)$$

for all $j = 1, \ldots, n$, and $0 \le t \le T$.

Remark 2.2. The coefficients $c_j(0)$ (which depend on j and n) will be chosen such that the sequence (u_{0n}) converges in $H_0^1(I)$ to u_0 .

2.1.2 Solution of the approximate problem

Lemma 2.3. For all j, there exists a unique solution u_n of Problem (2.4).

Proof. As e_1, \dots, e_n are orthonormal in $L^2(I)$, then

$$\int_{0}^{a} \partial_t u_n e_j \, \mathrm{d}x = \sum_{i=1}^{n} c'_i(t) \int_{0}^{a} e_i e_j \, \mathrm{d}x$$
$$= c'_j(t).$$

On the other hand,

$$-\partial_x^2 e_i = \lambda_i e_i,$$

then

$$\partial_x^2 u_n(t) = -\sum_{i=1}^n c_i(t) \lambda_i e_i.$$

Therefore, for all $t \in [0, T]$

$$-q(t) \int_{0}^{a} \partial_x^2 u_n e_j \, \mathrm{d}x = q(t) \sum_{i=1}^{n} c_i(t) \lambda_i \int_{0}^{a} e_i e_j \, \mathrm{d}x$$
$$= q(t) \lambda_j c_j(t).$$

Now, if we introduce

$$f_j(t) = \int_0^a fe_j \, \mathrm{d}x,$$
$$k_j(t) = -p(t) \int_0^a u_n \partial_x u_n e_j \, \mathrm{d}x,$$

and

$$h_j(t) = -\int_0^a r(t,x)\partial_x u_n e_j \,\mathrm{d}x,$$

for $j \in \{1, ..., n\}$, then (2.4) is equivalent to the following system of n uncoupled linear ordinary differential equations:

$$c'_{j}(t) = -q(t)\lambda_{j}c_{j}(t) + k_{j}(t) + h_{j}(t) + f_{j}(t), \qquad j = 1, ..., n.$$
(2.5)

The terms $k_j(t), h_j(t)$ are well defined (because e_j and r(t, x) are regular) and f_j is integrable (because $f \in L^2(R)$). Taking into account the initial condition $c_j(0)$, for each fixed $j \in \{1, \ldots, n\}$, (2.5) has a unique regular solution c_j in some interval (0, T') with $T' \leq T$. In fact, we can prove here that T' = T.

2.1.3 A priori estimate

Lemma 2.4. There exists a positive constant K_1 independent of n, such that for all $t \in [0,T]$

$$||u_n||_{L^2(I)}^2 + \alpha \int_0^t ||\partial_x u_n(s)||_{L^2(I)}^2 \, \mathrm{d}s \le K_1.$$

Proof. Multiplying (2.4) by c_j and summing for j = 1, ..., n, we obtain

$$\frac{1}{2}\frac{d}{dt}\int_{0}^{a}u_{n}^{2}\,\mathrm{d}x + q(t)\int_{0}^{a}(\partial_{x}u_{n})^{2}\,\mathrm{d}x - \frac{1}{2}\int_{0}^{a}\partial_{x}r(t,x)u_{n}^{2}\,\mathrm{d}x = \int_{0}^{a}fu_{n}\,\mathrm{d}x.$$

Indeed, because of the boundary conditions, we have

$$p(t)\int_{0}^{a}u_{n}^{2}\partial_{x}u_{n}\,\mathrm{d}x = \frac{p(t)}{3}\int_{0}^{a}\partial_{x}(u_{n})^{3}\,\mathrm{d}x = 0,$$

and an integration by parts gives

$$-\frac{1}{2}\int_{0}^{a}\partial_{x}r(t,x)u_{n}^{2}\,\mathrm{d}x = \int_{0}^{a}r(t,x)u_{n}\partial_{x}u_{n}\,\mathrm{d}x.$$

Then, by integrating with respect to $t \ (t \in (0,T))$, and according to (2.2), we find that

$$\begin{aligned} &\frac{1}{2} \|u_n\|_{L^2(I)}^2 + \alpha \int_0^t \|\partial_x u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s \\ &\leq \frac{1}{2} \|u_{0n}\|_{L^2(I)}^2 + \int_0^t \|f(s)\|_{L^2(I)} \|u_n(s)\|_{L^2(I)} \,\mathrm{d}s + \frac{\beta}{2} \int_0^t \|u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s \end{aligned}$$

By the elementary inequality

$$|rs| \le \frac{\varepsilon}{2}r^2 + \frac{s^2}{2\varepsilon}, \quad \forall r, s \in \mathbb{R}, \ \forall \varepsilon > 0,$$
(2.6)

with
$$\varepsilon = \frac{2\alpha}{a^2}$$
, we obtain

$$\frac{1}{2} \|u_n\|_{L^2(I)}^2 + \alpha \int_0^t \|\partial_x u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s$$

$$\leq \frac{1}{2} \|u_{0n}\|_{L^2(I)}^2 + \frac{a^2}{4\alpha} \int_0^t \|f(s)\|_{L^2(I)}^2 \,\mathrm{d}s$$

$$+ \frac{\alpha}{a^2} \int_0^t \|u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s + \frac{\beta}{2} \int_0^t \|u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s,$$

using Poincaré's inequality

$$||u_n||_{L^2(I)}^2 \le \frac{a^2}{2} ||\partial_x u_n||_{L^2(I)}^2,$$

then

$$\frac{\alpha}{a^2} \|u_n\|_{L^2(I)}^2 \le \frac{\alpha}{2} \|\partial_x u_n\|_{L^2(I)}^2,$$

and we obtain,

$$\begin{aligned} \|u_n\|_{L^2(I)}^2 + \alpha \int_0^t \|\partial_x u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s \\ &\leq \|u_{0n}\|_{L^2(I)}^2 + \frac{a^2}{2\alpha} \int_0^t \|f(s)\|_{L^2(I)}^2 \,\mathrm{d}s + \beta \int_0^t \|u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s, \end{aligned}$$

and

$$\begin{aligned} \|u_n\|_{L^2(I)}^2 + \alpha \int_0^t \|\partial_x u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s \\ &\leq \|u_{0n}\|_{L^2(I)}^2 + \frac{a^2}{2\alpha} \int_0^t \|f(s)\|_{L^2(I)}^2 \,\mathrm{d}s \\ &+ \beta \int_0^t \left(\|u_n(s)\|_{L^2(I)}^2 + \alpha \int_0^s \|\partial_x u_n(\tau)\|_{L^2(I)}^2 \,\mathrm{d}\tau \right) \,\mathrm{d}s. \end{aligned}$$

As the sequence (u_{0n}) converges in $H_0^1(I)$ to u_0 (see Remark 2.2) and $f \in L^2(R)$, there exists a positive constant C_1 independent of n such that

$$||u_{0n}||_{L^{2}(I)}^{2} + \frac{a^{2}}{2\alpha} ||f||_{L^{2}(R)}^{2} \le C_{1}$$

and

$$||u_n||^2_{L^2(I)} + \alpha \int_0^t ||\partial_x u_n(s)||^2_{L^2(I)} ds$$

$$\leq C_1 + \beta \int_0^t \left(||u_n(s)||^2_{L^2(I)} + \alpha \int_0^s ||\partial_x u_n(\tau)||^2_{L^2(I)} d\tau \right) ds,$$

then by Gronwall's inequality (see Corollary 1.33),

$$\|u_n\|_{L^2(I)}^2 + \alpha \int_0^t \|\partial_x u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s \le C_1 \exp(\beta t).$$

Taking $K_1 = C_1 \exp(\beta T)$, we obtain

$$||u_n||_{L^2(I)}^2 + \alpha \int_0^t ||\partial_x v_n(s)||_{L^2(I)}^2 \, \mathrm{d}s \le K_1.$$

Lemma 2.5. There exists a positive constant K_2 independent of n, such that for all $t \in [0,T]$

$$\|\partial_x u_n\|_{L^2(I)}^2 + \alpha \int_0^t \|\partial_x^2 u_n(s)\|_{L^2(I)}^2 \, \mathrm{d}s \le K_2.$$

Proof. As $-\partial_x^2 e_j = \lambda_j e_j$, we deduce that

$$\sum_{j=1}^{n} c_j(t)\lambda_j e_j = -\sum_{j=1}^{n} c_j(t)\partial_x^2 e_j = -\partial_x^2 u_n(t),$$

then, multiplying both sides of (2.4) by $c_j \lambda_j$ and summing for $j = 1, \ldots, n$, we obtain

$$\frac{1}{2}\frac{d}{dt}\int_{0}^{a}(\partial_{x}u_{n})^{2}\mathrm{d}x + q(t)\int_{0}^{a}(\partial_{x}^{2}u_{n})^{2}\,\mathrm{d}x$$

$$= -\int_{0}^{a}f\partial_{x}^{2}u_{n}\,\mathrm{d}x + \int_{0}^{a}r(t,x)\partial_{x}u_{n}\partial_{x}^{2}u_{n}\,\mathrm{d}x + p(t)\int_{0}^{a}u_{n}\partial_{x}u_{n}\partial_{x}^{2}u_{n}\,\mathrm{d}x.$$
(2.7)

Using Cauchy-Schwartz inequality, (2.6) with $\varepsilon = \alpha/2$ leads to

$$\left| \int_{0}^{a} f \partial_{x}^{2} u_{n} \, \mathrm{d}x \right| \leq \left(\int_{0}^{a} |\partial_{x}^{2} u_{n}|^{2} \, \mathrm{d}x \right)^{1/2} \left(\int_{0}^{a} |f|^{2} \, \mathrm{d}x \right)^{1/2} \\ \leq \frac{\alpha}{4} \int_{0}^{a} |\partial_{x}^{2} u_{n}|^{2} \, \mathrm{d}x + \frac{1}{\alpha} \int_{0}^{a} |f|^{2} \, \mathrm{d}x.$$

$$(2.8)$$

By (2.2) and inequality (2.6) with $\varepsilon = \frac{\alpha}{2}$, it follows that

$$\left|\int_{0}^{a} r(t,x)\partial_{x}u_{n}\partial_{x}^{2}u_{n} \,\mathrm{d}x\right| \leq \frac{\beta^{2}}{\alpha} \int_{0}^{a} |\partial_{x}u_{n}|^{2} \,\mathrm{d}x + \frac{\alpha}{4} \int_{0}^{a} |\partial_{x}^{2}u_{n}(s)| \,\mathrm{d}x.$$
(2.9)

Now, we have to estimate the last term of (2.7). An integration by parts gives

$$\int_{0}^{a} u_n \partial_x u_n \partial_x^2 u_n \, \mathrm{d}x = \int_{0}^{a} u_n \partial_x \left(\frac{1}{2} (\partial_x u_n)^2\right) \, \mathrm{d}x$$
$$= -\frac{1}{2} \int_{0}^{a} (\partial_x u_n)^3 \, \mathrm{d}x.$$

Since $\partial_x u_n$ satisfies $\int_{0}^{u} \partial_x u_n \, \mathrm{d}x = 0$ we deduce that the continuous function $\partial_x u_n$ is zero at some point $y_{0n} \in (0, a)$, and by integrating $2\partial_x u_n \partial_x^2 u_n$ between y_{0n} and x, we obtain

$$|\partial_x u_n|^2 = \left| \int\limits_{y_{0n}}^x \partial_x (\partial_x u_n)^2 \, \mathrm{d}x \right| = 2 \left| \int\limits_{y_{0n}}^x \partial_x u_n \partial_x^2 u_n \, \mathrm{d}x \right|,$$

the Cauchy-Schwarz inequality gives

$$\|\partial_x u_n\|_{L^{\infty}(I)}^2 \le 2\|\partial_x u_n\|_{L^2(I)}\|\partial_x^2 u_n\|_{L^2(I)}.$$

But

$$\|\partial_x u_n\|_{L^3(I)}^3 \le \|\partial_x u_n\|_{L^2(I)}^2 \|\partial_x u_n\|_{L^\infty(I)}.$$

So, (2.2) yields

$$\left|\int_{0}^{a} p(t)u_n \partial_x u_n \partial_x^2 u_n \,\mathrm{d}x\right| \leq \left(\int_{0}^{a} |\partial_x^2 u_n|^2 \,\mathrm{d}x\right)^{1/4} \left(\beta^{4/5} \int_{0}^{a} |\partial_x u_n|^2 \,\mathrm{d}x\right)^{5/4}.$$

Finally, thanks to Young's inequality $|AB| \leq \frac{|A|^p}{p} + \frac{|B|^{p'}}{p'}$, with $1 and <math>p' = \frac{p}{p-1}$, we have

$$AB| = \left| (\alpha^{1/p} A) \left(\alpha^{1/p'} \frac{B}{\alpha} \right) \right|$$

$$\leq \frac{\alpha}{p} |A|^p + \frac{\alpha}{p' \alpha^{p'}} |B|^{p'}.$$

Choosing p = 4 (then $p' = \frac{4}{3}$) in the previous formula,

$$A = \left(\int_{0}^{a} |\partial_x^2 u_n|^2 \,\mathrm{d}x\right)^{1/4},$$

and

$$B = \left(\beta^{4/5} \int_{0}^{a} |\partial_x u_n|^2 \,\mathrm{d}x\right)^{5/4},$$

the estimate of the last term of (2.7) becomes

$$\left| \int_{0}^{a} p(t) u_{n} \partial_{x} u_{n} \partial_{x}^{2} u_{n} \, \mathrm{d}x \right| \leq \frac{\alpha}{4} \int_{0}^{a} |\partial_{x}^{2} u_{n}|^{2} \, \mathrm{d}x + \frac{3}{4} \frac{\beta^{4/3}}{\alpha^{1/3}} \left(\int_{0}^{a} |\partial_{x} u_{n}|^{2} \, \mathrm{d}x \right)^{5/3}.$$
 (2.10)

Let us return to inequality (2.7): By integrating between 0 and t, from the estimates (2.8), (2.9), and (2.10) we obtain

$$\begin{split} &\frac{1}{2} \|\partial_x u_n\|_{L^2(I)}^2 + \alpha \int_0^t \|\partial_x^2 u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s \\ &\leq \frac{1}{2} \|\partial_x u_{0n}\|_{L^2(I)}^2 + \frac{\alpha}{4} \int_0^t \|\partial_x^2 u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s + \frac{1}{\alpha} \int_0^t \|f(s)\|_{L^2(I)}^2 \,\mathrm{d}s \\ &\quad + \frac{\beta^2}{\alpha} \int_0^t \|\partial_x u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s + \frac{\alpha}{4} \int_0^t \|\partial_x^2 u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s \\ &\quad + \frac{\alpha}{4} \int_0^t \|\partial_x^2 u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s + \frac{3\beta^{4/3}}{4\alpha^{1/3}} \int_0^t \left(\|\partial_x u_n(s)\|_{L^2(I)}^2\right)^{5/3} \,\mathrm{d}s, \end{split}$$

multiplying both sides of the last inequality by 4, we obtain

$$2\|\partial_x u_n\|_{L^2(I)}^2 + \alpha \int_0^t \|\partial_x^2 u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s$$

$$\leq 2\|\partial_x u_{0n}\|_{L^2(I)}^2 + \frac{4}{\alpha} \int_0^t \|f(s)\|_{L^2(I)}^2 \,\mathrm{d}s$$

$$+ C_2 \int_0^t \left(\|\partial_x u_n(s)\|_{L^2(I)}^2\right)^{5/3} \,\mathrm{d}s + C_3 \int_0^t \|\partial_x u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s$$

where $C_2 = \frac{3\beta^{4/3}}{\alpha^{1/3}}$ and $C_3 = \frac{4\beta^2}{\alpha}$.

Observe that $f \in L^2(R)$), and $\|\partial_x u_{0n}\|_{L^2(I)}^2$ is bounded (see Remark 2.2). Then, there exists a constant C_4 such that

$$\begin{aligned} \|\partial_x u_n\|_{L^2(I)}^2 + \alpha \int_0^t \|\partial_x^2 u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s \\ &\leq C_4 + C_2 \int_0^t \left(\|\partial_x u_n(s)\|_{L^2(I)}^2\right)^{2/3} \|\partial_x u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s + C_3 \int_0^t \|\partial_x u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s. \end{aligned}$$

Consequently, the function

$$\varphi(t) = \|\partial_x u_n\|_{L^2(I)}^2 + \alpha \int_0^t \|\partial_x^2 u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s$$

satisfies the inequality

$$\varphi(t) \le C_4 + \int_0^t (C_2 \|\partial_x u_n(s)\|_{L^2(I)}^{4/3} + C_3)\varphi(s) \mathrm{d}s.$$

Gronwall's inequality shows that

$$\varphi(t) \le C_4 \exp\left(\int_{0}^{t} (C_2 \|\partial_x u_n(s)\|_{L^2(I)}^{4/3} + C_3) \mathrm{d}s\right).$$

According to Lemma 2.4 the integral $\int_{0}^{t} \|\partial_{x}u_{n}\|_{L^{2}(I)}^{4/3} ds$ is bounded by a constant independent of n (and t).

So, there exists a positive constant K_2 such that

$$\|\partial_x u_n\|_{L^2(I)}^2 + \alpha \int_0^t \|\partial_x^2 u_n(s)\|_{L^2(I)}^2 \,\mathrm{d}s \le K_2.$$

Lemma 2.6. There exists a positive constant K_3 independent of n, such that for all $t \in [0,T]$

$$\|\partial_t u_n\|_{L^2(R)}^2 \le K_3.$$

Proof. Let

$$g_n = f - p(t)u_n \partial_x u_n + q(t) \partial_x^2 u_n - r(t, x) \partial_x u_n.$$

To show that $\partial_t u_n$ is bounded in $L^2(R)$, we will first show that g_n is bounded in $L^2(R)$.

According to Lemmas 2.4 and 2.5, the terms $r(t, x)\partial_x u_n$ and $\beta(t)\partial_x^2 u_n$ are bounded in $L^2(R)$. On the other hand, by the hypothesis $f \in L^2(R)$. It remains only to show that $p(t)u_n\partial_x u_n \in L^2(R)$.

Lemma 2.4 proves that $||u_n||^2_{L^{\infty}(0,T;H^1_0(I))}$ is bounded. Then, using the injection of $H^1_0(I)$ in $L^{\infty}(I)$, we obtain

$$\left| \int_{0}^{T} \int_{0}^{a} (p(t)u_{n}\partial_{x}u_{n})^{2} dx dt \right| \leq \beta^{2} \int_{0}^{T} \left(\|u_{n}\|_{L^{\infty}(I)}^{2} \int_{0}^{a} |\partial_{x}u_{n}|^{2} dx \right) dt$$
$$\leq \beta^{2} C_{I} \int_{0}^{T} \|u_{n}\|_{H^{1}_{0}(I)}^{2} \|\partial_{x}u_{n}\|_{L^{2}(I)}^{2} dt$$
$$\leq \beta^{2} C_{I} \|u_{n}\|_{L^{\infty}(0,T;H^{1}_{0}(I))}^{2} \|\partial_{x}u_{n}\|_{L^{2}(R)}^{2},$$

where C_I is a constant independent of n. Hence g_n is bounded in $L^2(R)$. So, $\partial_t u_n$ is also bounded in $L^2(R)$.

Indeed, from (2.4) for $j = 1, \ldots, n$, we have

$$\int_{0}^{a} \partial_{t} u_{n} e_{j} \, \mathrm{d}x = \int_{0}^{a} (f - p(t)u_{n} \partial_{x} u_{n} + q(t) \partial_{x}^{2} u_{n} - r(t, x) \partial_{x} u_{n}) e_{j} \, \mathrm{d}x$$
$$= \int_{0}^{a} g_{n} e_{j} \, \mathrm{d}x,$$

multiplying both sides by c'_j and summing for $j = 1, \ldots, n$,

$$\|\partial_t u_n\|_{L^2(I)}^2 = \int_0^a g_n \partial_t u_n \,\mathrm{d}x,$$

we deduce that $\|\partial_t u_n\|_{L^2(R)} \le \|g_n\|_{L^2(R)}$.

2.1.4 Existence and uniqueness

Lemmas 2.4, 2.5 and 2.6 show that the Galerkin approximation u_n is bounded in $L^{\infty}(0, T, L^2(I))$, and in $L^2(0, T, H^2(I))$, and $\partial_t u_n$ is bounded in $L^2(R)$. So, it is possible to extract a subsequence from u_n (that we continue to denote u_n) such that

$$u_n \to u \quad \text{weakly in } L^2(0, T, H^1_0(I)),$$

$$(2.11)$$

$$u_n \to u$$
 strongly in $L^2(0, T, L^2(I))$ and a.e. in R , (2.12)

$$\partial_t u_n \to \partial_t u \quad \text{weakly in } L^2(R).$$
 (2.13)

Lemma 2.7. Under the assumptions of Theorem 2.1, Problem (2.1) admits a weak solution $u \in H^{1,2}(R)$.

Proof. Note that (2.13) implies

$$\int_{0}^{T} \int_{0}^{a} \partial_{t} u_{n} w \, \mathrm{d}x \, \mathrm{d}t \to \int_{0}^{T} \int_{0}^{a} \partial_{t} u w \, \mathrm{d}x \, \mathrm{d}t, \quad \forall w \in L^{2}(R).$$

From (2.11) and (2.12),

$$u_n \partial_x u_n \to u \partial_x u$$
 weakly in $L^2(R)$,

then

$$\int_{0}^{T} \int_{0}^{a} p(t)u_n \partial_x u_n w \, \mathrm{d}x \, \mathrm{d}t \to \int_{0}^{T} \int_{0}^{a} p(t)u \partial_x u w \, \mathrm{d}x \, \mathrm{d}t, \quad \forall w \in L^2(R),$$

and

$$\int_{0}^{T} \int_{0}^{a} r(t,x) \partial_{x} u_{n} w \, \mathrm{d}x \, \mathrm{d}t \to \int_{0}^{T} \int_{0}^{a} r(t,x) \partial_{x} u w \, \mathrm{d}x \, \mathrm{d}t, \quad \forall w \in L^{2}(R).$$

Our goal is to use these properties to pass to the limit. In Problem (2.4), when $n \to +\infty$, for each fixed j, we have

$$\int_{0}^{a} (\partial_{t}u + p(t)u\partial_{x}u) e_{j} dx + q(t) \int_{0}^{a} \partial_{x}u\partial_{x}e_{j} dx + \int_{0}^{a} r(t,x)\partial_{x}ue_{j} dx$$

$$= \int_{0}^{a} fe_{j} dx,$$
(2.14)

Since $(e_j)_{j\in\mathbb{N}}$ is a basis of $H^1_0(I)$, for all $w \in H^1_0(I)$, we can write

$$w(t) = \sum_{k=1}^{\infty} b_k(t) e_k,$$

that is to say $w_N(t) = \sum_{k=1}^N b_k(t) e_k \to w(t)$ in $H_0^1(I)$ when $N \to +\infty$.

Multiplying (2.14) by b_k and summing for k = 1, ..., N, then

$$\int_{0}^{a} (\partial_{t}u + p(t)u\partial_{x}u) w_{N} dx + q(t) \int_{0}^{a} \partial_{x}u\partial_{x}w_{N} dx + \int_{0}^{a} r(t,x)\partial_{x}uw_{N} dx$$
$$= \int_{0}^{a} fw_{N} dx.$$

Letting $N \to +\infty$, we deduce that

$$\int_{0}^{a} (\partial_{t}u + p(t)u\partial_{x}u) w \, \mathrm{d}x + q(t) \int_{0}^{a} \partial_{x}u\partial_{x}w \, \mathrm{d}x + \int_{0}^{a} r(t,x)\partial_{x}uw \, \mathrm{d}x = \int_{0}^{a} fw \, \mathrm{d}x,$$

so, u satisfies the weak formulation (2.3) for all $w \in H_0^1(I)$ and $t \in [0; T]$.

Finally, we recall that, by hypothesis, $\lim_{n\to+\infty} u_n(0) := u_0$. This completes the proof of the "existence" part of Theorem 2.1.

Lemma 2.8. Under the assumptions of Theorem 2.1, the solution of Problem (2.1) is unique.

Proof. Let us observe that any solution $u \in H^{1,2}(R)$ of Problem (2.1) is in $L^{\infty}(0, T, L^{2}(I))$. Indeed, it is not difficult to see that such a solution satisfies

$$\frac{1}{2}\frac{d}{dt}\int_{0}^{a}u^{2}\,\mathrm{d}x + q(t)\int_{0}^{a}(\partial_{x}u)^{2}\,\mathrm{d}x - \frac{1}{2}\int_{0}^{a}\partial_{x}\gamma(t,x)u^{2}\,\mathrm{d}x = \int_{0}^{a}fu\,\mathrm{d}x,$$

because

$$p(t)\int_{0}^{a}u^{2}\partial_{x}u\,\mathrm{d}x = \frac{p(t)}{3}\int_{0}^{a}\partial_{x}(u)^{3}\,\mathrm{d}x = 0,$$

and

$$\int_{0}^{a} r(t,x)\partial_x uu \,\mathrm{d}x = \int_{0}^{a} r(t,x)\partial_x (\frac{u^2}{2}) \,\mathrm{d}x = -\frac{1}{2}\int_{0}^{a} \partial_x r(t,x)u^2 \,\mathrm{d}x.$$

Consequently (see the proof of Lemma 2.4)

$$\begin{aligned} \|u\|_{L^{2}(I)}^{2} + \alpha \int_{0}^{t} \|\partial_{x}u(s)\|_{L^{2}(I)}^{2} \,\mathrm{d}s \\ &\leq \|u_{0}\|_{L^{2}(I)}^{2} + \frac{a^{2}}{2\alpha} \int_{0}^{t} \|f(s)\|_{L^{2}(I)}^{2} \,\mathrm{d}s + \beta \int_{0}^{t} \|u(s)\|_{L^{2}(I)}^{2} \,\mathrm{d}s, \end{aligned}$$

 $\mathrm{so},$

$$\begin{aligned} \|u\|_{L^{2}(I)}^{2} + \alpha \int_{0}^{t} \|\partial_{x}u(s)\|_{L^{2}(I)}^{2} \,\mathrm{d}s \\ &\leq \|u_{0}\|_{L^{2}(I)}^{2} + \frac{a^{2}}{2\alpha} \int_{0}^{t} \|f(s)\|_{L^{2}(I)}^{2} \,\mathrm{d}s \\ &+ \beta \int_{0}^{t} \left(\|u(s)\|_{L^{2}(I)}^{2} + \alpha \int_{0}^{s} \|\partial_{x}u(\tau)\|_{L^{2}(I)}^{2} \,\mathrm{d}\tau \right) \,\mathrm{d}s. \end{aligned}$$

Then there exist a positive constant C such that

$$\|u\|_{L^{2}(I)}^{2} + \alpha \int_{0}^{t} \|\partial_{x}u(s)\|_{L^{2}(I)}^{2} ds$$

$$\leq C + \beta \int_{0}^{t} \left(\|u(s)\|_{L^{2}(I)}^{2} + \alpha \int_{0}^{s} \|\partial_{x}u(\tau)\|_{L^{2}(I)}^{2} d\tau \right) ds.$$

Hence, Gronwall's lemma gives

$$\|u\|_{L^{2}(I)}^{2} + \alpha \int_{0}^{t} \|\partial_{x}u(s)\|_{L^{2}(I)}^{2} \,\mathrm{d}s \le K,$$

where $K = C \exp(\beta T)$. This shows that $u \in L^{\infty}(0, T, L^{2}(I))$ for all $f \in L^{2}(I)$.

Now, let $u_1, u_2 \in H^{1,2}(R)$ be two solutions of (2.1). We put $u = u_1 - u_2$. It is clear that $u \in L^{\infty}(0, T, L^2(I))$. The equations satisfied by u_1 and u_2 lead to

$$\int_{0}^{a} [\partial_{t}uw + \alpha(t)uw\partial_{x}u_{1} + p(t)u_{2}w\partial_{x}u + q(t)\partial_{x}u\partial_{x}w + r(t,x)w\partial_{x}u] \,\mathrm{d}x = 0.$$

Taking, for $t \in [0, T]$, w = u as a test function, we deduce that

$$\frac{1}{2} \frac{d}{dt} \|u\|_{L^{2}(I)}^{2} + \beta(t) \|\partial_{x}u\|_{L^{2}(I)}^{2} \\
= -\int_{0}^{a} r(t, x) u \partial_{x}u \, dx - p(t) \int_{0}^{a} u^{2} \partial_{x}u_{1} \, dx - p(t) \int_{0}^{a} u_{2}u \partial_{x}u \, dx.$$
(2.15)

An integration by parts gives

$$p(t) \int_{0}^{a} u^{2} \partial_{x} u_{1} \,\mathrm{d}x = -2p(t) \int_{0}^{a} u \partial_{x} u u_{1} \,\mathrm{d}x,$$

then (2.15) becomes

$$\frac{1}{2}\frac{d}{dt}\|u\|_{L^{2}(I)}^{2} + q(t)\|\partial_{x}u\|_{L^{2}(I)}^{2} = \frac{1}{2}\int_{0}^{a}\partial_{x}r(t,x)u^{2}\,\mathrm{d}x + \int_{0}^{a}p(t)(2u_{1}-u_{2})u\partial_{x}u\,\mathrm{d}x.$$

By (2.2) and inequality (2.6) with $\varepsilon = 2\alpha$, it follows that

$$\begin{aligned} &|\int_{0}^{a} p(t)(2u_{1}-u_{2})u\partial_{x}u\,\mathrm{d}x|\\ &\leq \frac{\beta^{2}}{4\alpha}(2\|u_{1}\|_{L^{\infty}(I)}+\|u_{2}\|_{L^{\infty}(I)})^{2}\|u\|_{L^{2}(I)}^{2}+\alpha\|\partial_{x}u\|_{L^{2}(I)}^{2}.\end{aligned}$$

Then, using the injection of $H_0^1(I)$ in $L^{\infty}(I)$, we obtain

$$\begin{split} &|\int_{0}^{a} p(t)(2u_{1}-u_{2})u\partial_{x}u\,\mathrm{d}x|\\ &\leq \frac{\beta^{2}}{4\alpha}(2\|u_{1}\|_{L^{\infty}(0,T,H^{1}_{0}(I))}+\|u_{2}\|_{L^{\infty}(0,T,H^{1}_{0}(I))})^{2}\|u\|_{L^{2}(I)}^{2}+\alpha\|\partial_{x}u\|_{L^{2}(I)}^{2}. \end{split}$$

Furthermore,

$$\frac{1}{2} \int_{0}^{a} \partial_x \gamma(t, x) u^2 \, \mathrm{d}x \le \frac{\beta}{2} \|u\|_{L^2(I)}^2.$$

So,

$$\begin{split} &\frac{1}{2} \frac{d}{dt} \|u\|_{L^{2}(I)}^{2} + \alpha \|\partial_{x}u\|_{L^{2}(I)}^{2} \\ &\leq \frac{\beta^{2}}{4\alpha} (2\|u_{1}\|_{L^{\infty}(0,T,H_{0}^{1}(I))} + \|u_{2}\|_{L^{\infty}(0,T,H_{0}^{1}(I))})^{2} \|u\|_{L^{2}(I)}^{2} \\ &+ \alpha \|\partial_{x}u\|_{L^{2}(I)}^{2} + \frac{\beta}{2} \|u\|_{L^{2}(I)}^{2}. \end{split}$$

We deduce that there exists a positive constant D, such that

$$\frac{1}{2}\frac{d}{dt}\|u\|_{L^2(I)}^2 \le D\|u\|_{L^2(I)}^2,$$

and Gronwall's lemma leads to u = 0. This completes the proof.

2.2 Burgers equation in a domain that can be transformed into a rectangle

Let $\Omega \subset \mathbb{R}^2$ be the domain

$$\Omega = \{ (t, x) \in \mathbb{R}^2 : 0 < t < T, \ x \in I_t \},\$$
$$I_t = \{ x \in \mathbb{R} : \varphi_1(t) < x < \varphi_2(t), \ t \in (0, T) \}$$

In this section, we assume that $\varphi_1(0) \neq \varphi_2(0)$. In other words

$$\varphi_1(t) < \varphi_2(t) \quad \text{for all } t \in [0, T].$$
 (2.16)

and we consider the Burgers problem

$$\begin{cases} \partial_t u(t,x) + c(t)u(t,x)\partial_x u(t,x) - \partial_x^2 u(t,x) = f(t,x) \quad (t,x) \in \Omega, \\ u(0,x) = 0 \quad x \in I_0 = (\varphi_1(0), \varphi_2(0)), \\ u(t,\varphi_1(t)) = u(t,\varphi_2(t)) = 0 \quad t \in (0,T), \end{cases}$$
(2.17)

in $\Omega \subset \mathbb{R}^2$, such that

$$c_1 \le c(t) \le c_2$$
, for all $t \in [0, T]$, (2.18)

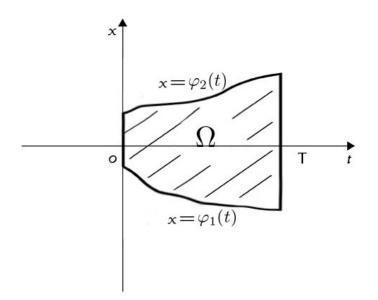


Figure 2.1: Domain that can be transformed into rectangle

where c_1 and c_2 are positive constants and φ_1 , φ_2 are functions defined on [0, T] belonging to $C^1([0, T[)$.

Using the results obtained in the first part of this chapter, we look for conditions on the functions $(\varphi_i)_{i=1,2}$ which guarantee that Problem (2.17) admits a unique solution $u \in H^{1,2}(\Omega)$.

In order to solve Problem (2.17), we will follow the method which was used, for example, in Sadallah[42] and Clark *et al.* [14]. This method consists in proving that this problem admits a unique solution when Ω is transformed into a rectangle, using a change of variables preserving the anisotropic Sobolev space $H^{1,2}(\Omega)$.

To establish the existence and uniqueness of the solution to (2.17), we impose the assumption

$$|\varphi'(t)| \le c \quad \text{for all } t \in [0, T] \tag{2.19}$$

where c is a positive constant, and $\varphi(t) = \varphi_2(t) - \varphi_1(t)$ for all $t \in [0, T]$.

The result related to the existence of the solution u of (2.17) in a rectangle is obtained

thanks to a personal (and detailed) communication of professor Luc Tartar about the Burgers equation with constant coefficients in a rectangle. The authors would like to thank him for his appreciate comments and hints.

Theorem 2.9. If $f \in L^2(\Omega)$ and c(t), $(\varphi_i)_{i=1,2}$ satisfy the assumptions (2.18), (2.16) and (2.19), then Problem (2.17) admits a unique solution $u \in H^{1,2}(\Omega)$.

The proof of Theorem 2.9 needs an appropriate change of variables which allows us to use Theorem 2.1.

Proof. The change of variables: $\Omega \to R$

$$(t,x) \mapsto (t,y) = \left(t, \frac{x - \varphi_1(t)}{\varphi_2(t) - \varphi_1(t)}\right)$$

transforms Ω into the rectangle $R = (0, T) \times (0, 1)$. Putting u(t, x) = v(t, y) and f(t, x) = g(t, y), Problem (2.17) becomes

$$\begin{aligned}
\partial_t v(t,y) + p(t)v(t,y)\partial_y v(t,y) - q(t)\partial_y^2 v(t,y) + r(t,y)\partial_y v(t,y) \\
&= g(t,y) \quad (t,y) \in R, \\
v(0,y) &= 0 \quad y \in (0,1), \\
v(t,0) &= v(t,1) = 0 \quad t \in (0,T),
\end{aligned}$$
(2.20)

where

$$\varphi(t) = \varphi_2(t) - \varphi_1(t), \quad p(t) = \frac{c(t)}{\varphi(t)},$$
$$q(t) = \frac{1}{\varphi^2(t)}, \quad r(t, y) = -\frac{y\varphi'(t) + \varphi_1'(t)}{\varphi(t)}.$$

This change of variables preserves the spaces $H^{1,2}$ and L^2 . In other words

$$f \in L^{2}(\Omega) \iff g \in L^{2}(R),$$
$$u \in H^{1,2}(\Omega) \iff v \in H^{1,2}(R).$$

According to (2.18) and (2.19), the functions p, q and r satisfy the following conditions

$$\alpha < p(t) < \beta, \quad \forall t \in [0, T],$$
$$\alpha < q(t) < \beta, \quad \forall t \in [0, T],$$
$$|\partial_y r(t, y)| \le \beta, \quad \forall (t, y) \in R,$$

where α and β are positive constants.

So, Problem (2.17) is equivalent to Problem (2.20), and by Theorem 2.1 Problem (2.20) admits a solution $v \in H^{1,2}(R)$. Then, Problem (2.17) in the domain Ω admits a solution $u \in H^{1,2}(\Omega)$.