Chapter 2

Existence of solutions to Burgers equation in domain that can be transformed into rectangle

In this chapter, we consider a non homogeneous Burgers problem with time variable coefficients subject to Cauchy-Dirichlet boundary conditions in a non rectangular domain. This domain will be transformed into a rectangle by a regular change of variables. The right-hand side of the equation is taken in L^{2}, and the initial condition is in the Sobolev space H_{0}^{1}. The goal is to establish the existence, the uniqueness and the regularity of the solution.

2.1 Existence of solutions to a parabolic problem with variable coefficients in a rectangle

In this section, we consider the semilinear parabolic problem

$$
\left\{\begin{array}{l}
\partial_{t} u(t, x)+p(t) u(t, x) \partial_{x} u(t, x)-q(t) \partial_{x}^{2} u(t, x)+ \tag{2.1}\\
\quad r(t, x) \partial_{x} u(t, x)=f(t, x)(t, x) \in R, \\
u(0, x)=u_{0}(x) \quad x \in I \\
u(t, a)=u(t, 0)=0 \quad t \in(0, T),
\end{array}\right.
$$

in the rectangle $R=(0, T) \times I$ where $I=(0, a), a \in R^{+}$(T is a positive finite number); $f \in L^{2}(R)$ and $u_{0} \in H_{0}^{1}(I)$ are given functions.

We assume that the functions p, q depend only on t and the function r depends on t and x. We also suppose that there exist two positive constants α and β, such that

$$
\begin{array}{rlr}
\alpha \leq p(t) \leq \beta, \quad \alpha \leq q(t) \leq \beta, & \forall t \in[0, T] \tag{2.2}\\
\text { and } \quad\left|\partial_{x} r(t, x)\right| \leq \beta \quad \text { ou } \quad|r(t, x)| \leq \beta & \forall(t, x) \in R .
\end{array}
$$

In a paper by Morandi Cecchi et al. [37], the main result was the existence and uniqueness of a solution to the Burgers problem (with constant coefficients) in the anistropic Sobolev space

$$
H^{1,2}(R)=\left\{u \in L^{2}(R): \partial_{t} u \in L^{2}(R), \partial_{x} u \in L^{2}(R), \partial_{x}^{2} u \in L^{2}(R)\right\}
$$

where R is a rectangle. The authors used a wrong inequality (namely $\int_{\Omega} M(u-M)^{+}(t) \mathrm{d} x \leq$ $\left.M\left\|(u-M)^{+}(t)\right\|^{2}\right)$ at the end of the proof of Theorem 2 (maximum principle); the inequality appears in the line 14 , page 165 (and line 15 page 167). To rectify this part of the proof it suffices to show that $u \in L^{\infty}(Q)$. The proof given by the authors remains true only when $f=0$ (but this was not the objective of their paper), this case being treated by Bressan in [9]. However, in our work, using another method, we prove a more general result concerning the existence, uniqueness and regularity of a solution to the Burgers problem with variable coefficients in a rectangle. Then, the existence, uniqueness and regularity of a solution to the Burgers problem in a domain that can be transformed into a rectangle.

The main result of This section is as follows:

Theorem 2.1. If $u_{0} \in H_{0}^{1}(I), f \in L^{2}(R)$ and p, q, r satisfy the assumption (2.2), then Problem (2.1) admits a unique solution $u \in H^{1,2}(R)$.

2.1.1 Resolution of the parabolic problem (2.1)

The proof of Theorem 2.1 is based on the Faedo-Galerkin method. We introduce approximate solution by reduction to the finite dimension. By the Faedo-Galerkin method, we obtain the existence of an approximate solution using an existence theorem of solutions for a system of ordinary differential equations. We approximate the equation of Problem (2.1) by a simple equation. Then we make the passage to the limit using a compactness argument.

Multiplying the equation of Problem (2.1) by a test function $w \in H_{0}^{1}(I)$, and integrating by parts from 0 to a, we obtain

$$
\begin{align*}
\int_{0}^{a} \partial_{t} u w \mathrm{~d} x+q(t) \int_{0}^{a} \partial_{x} u \partial_{x} w \mathrm{~d} x & +p(t) \int_{0}^{a} u \partial_{x} u w \mathrm{~d} x+\int_{0}^{a} r(t, x) \partial_{x} u w \mathrm{~d} x \tag{2.3}\\
& =\int_{0}^{a} f w \mathrm{~d} x, \forall w \in H_{0}^{1}(I), \quad t \in(0, T)
\end{align*}
$$

This is the weak formulation of Problem (2.1). The solution of (2.3) satisfying the conditions of Problem (2.1) is called weak solution.

To prove the existence of a weak solution to 2.1), we choose the basis $\left(e_{j}\right)_{j \in \mathbb{N}^{\star}}$ of $L^{2}(I)$ defined as a subset of the eigenfunctions of $-\partial_{x}^{2}$ for the Dirichlet problem

$$
\begin{aligned}
& -\partial_{x}^{2} e_{j}=\lambda_{j} e_{j}, \quad j \in \mathbb{N}^{*} \\
& e_{j}=0 \quad \text { on } \Gamma=\{0, a\}
\end{aligned}
$$

More precisely,

$$
e_{j}(x)=\frac{\sqrt{2}}{\sqrt{a}} \sin \frac{j \pi x}{a}, \quad \lambda_{j}=\left(\frac{j \pi}{a}\right)^{2}, \quad \text { for } j \in \mathbb{N}^{*}
$$

As the family $\left(e_{j}\right)_{j \in \mathbb{N}^{\star}}$ is an orthonormal basis of $L^{2}(I)$, then it is an orthogonal basis of $H_{0}^{1}(I)$. In particular, for $v \in L^{2}(R)$, we can write

$$
v=\sum_{k=1}^{\infty} b_{k}(t) e_{k}
$$

where $b_{k}=\left(v, e_{k}\right)_{L^{2}(I)}$ and the series converges in $L^{2}(I)$. Then, we introduce the approximate solution u_{n} by

$$
\begin{gathered}
u_{n}(t)=\sum_{j=1}^{n} c_{j}(t) e_{j} \\
u_{n}(0)=u_{0 n}=\sum_{j=1}^{n} c_{j}(0) e_{j}
\end{gathered}
$$

which has to satisfy the approximate problem

$$
\left\{\begin{align*}
& \int_{0}^{a}\left(\partial_{t} u_{n}+p(t) u_{n} \partial_{x} u_{n}\right) e_{j} \mathrm{~d} x+q(t) \int_{0}^{a} \partial_{x} u_{n} \partial_{x} e_{j} \mathrm{~d} x \tag{2.4}\\
&+\int_{0}^{a} r(t, x) \partial_{x} u_{n} e_{j} \mathrm{~d} x=\int_{0}^{a} f e_{j} \mathrm{~d} x \\
& u_{n}(0)=u_{0 n}
\end{align*}\right.
$$

for all $j=1, \ldots, n$, and $0 \leq t \leq T$.

Remark 2.2. The coefficients $c_{j}(0)$ (which depend on j and n) will be chosen such that the sequence $\left(u_{0 n}\right)$ converges in $H_{0}^{1}(I)$ to u_{0}.

2.1.2 Solution of the approximate problem

Lemma 2.3. For all j, there exists a unique solution u_{n} of Problem (2.4.
Proof. As e_{1}, \cdots, e_{n} are orthonormal in $L^{2}(I)$, then

$$
\begin{aligned}
\int_{0}^{a} \partial_{t} u_{n} e_{j} \mathrm{~d} x & =\sum_{i=1}^{n} c_{i}^{\prime}(t) \int_{0}^{a} e_{i} e_{j} \mathrm{~d} x \\
& =c_{j}^{\prime}(t)
\end{aligned}
$$

On the other hand,

$$
-\partial_{x}^{2} e_{i}=\lambda_{i} e_{i}
$$

then

$$
\partial_{x}^{2} u_{n}(t)=-\sum_{i=1}^{n} c_{i}(t) \lambda_{i} e_{i}
$$

Therefore, for all $t \in[0, T]$

$$
\begin{aligned}
-q(t) \int_{0}^{a} \partial_{x}^{2} u_{n} e_{j} \mathrm{~d} x & =q(t) \sum_{i=1}^{n} c_{i}(t) \lambda_{i} \int_{0}^{a} e_{i} e_{j} \mathrm{~d} x \\
& =q(t) \lambda_{j} c_{j}(t)
\end{aligned}
$$

Now, if we introduce

$$
\begin{gathered}
f_{j}(t)=\int_{0}^{a} f e_{j} \mathrm{~d} x \\
k_{j}(t)=-p(t) \int_{0}^{a} u_{n} \partial_{x} u_{n} e_{j} \mathrm{~d} x
\end{gathered}
$$

and

$$
h_{j}(t)=-\int_{0}^{a} r(t, x) \partial_{x} u_{n} e_{j} \mathrm{~d} x
$$

for $j \in\{1, \ldots, n\}$, then (2.4) is equivalent to the following system of n uncoupled linear ordinary differential equations:

$$
\begin{equation*}
c_{j}^{\prime}(t)=-q(t) \lambda_{j} c_{j}(t)+k_{j}(t)+h_{j}(t)+f_{j}(t), \quad j=1, \ldots, n \tag{2.5}
\end{equation*}
$$

The terms $k_{j}(t), h_{j}(t)$ are well defined (because e_{j} and $r(t, x)$ are regular) and f_{j} is integrable (because $f \in L^{2}(R)$). Taking into account the initial condition $c_{j}(0)$, for each fixed $j \in\{1, \ldots, n\}$, 2.5 has a unique regular solution c_{j} in some interval $\left(0, T^{\prime}\right)$ with $T^{\prime} \leq T$. In fact, we can prove here that $T^{\prime}=T$.

2.1.3 A priori estimate

Lemma 2.4. There exists a positive constant K_{1} independent of n, such that for all $t \in[0, T]$

$$
\left\|u_{n}\right\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \leq K_{1}
$$

Proof. Multiplying (2.4) by c_{j} and summing for $j=1, \ldots, n$, we obtain

$$
\frac{1}{2} \frac{d}{d t} \int_{0}^{a} u_{n}^{2} \mathrm{~d} x+q(t) \int_{0}^{a}\left(\partial_{x} u_{n}\right)^{2} \mathrm{~d} x-\frac{1}{2} \int_{0}^{a} \partial_{x} r(t, x) u_{n}^{2} \mathrm{~d} x=\int_{0}^{a} f u_{n} \mathrm{~d} x
$$

Indeed, because of the boundary conditions, we have

$$
p(t) \int_{0}^{a} u_{n}^{2} \partial_{x} u_{n} \mathrm{~d} x=\frac{p(t)}{3} \int_{0}^{a} \partial_{x}\left(u_{n}\right)^{3} \mathrm{~d} x=0
$$

and an integration by parts gives

$$
-\frac{1}{2} \int_{0}^{a} \partial_{x} r(t, x) u_{n}^{2} \mathrm{~d} x=\int_{0}^{a} r(t, x) u_{n} \partial_{x} u_{n} \mathrm{~d} x .
$$

Then, by integrating with respect to $t(t \in(0, T))$, and according to (2.2), we find that

$$
\begin{aligned}
& \frac{1}{2}\left\|u_{n}\right\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \\
& \leq \frac{1}{2}\left\|u_{0 n}\right\|_{L^{2}(I)}^{2}+\int_{0}^{t}\|f(s)\|_{L^{2}(I)}\left\|u_{n}(s)\right\|_{L^{2}(I)} \mathrm{d} s+\frac{\beta}{2} \int_{0}^{t}\left\|u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s
\end{aligned}
$$

By the elementary inequality

$$
\begin{equation*}
|r s| \leq \frac{\varepsilon}{2} r^{2}+\frac{s^{2}}{2 \varepsilon}, \quad \forall r, s \in \mathbb{R}, \forall \varepsilon>0 \tag{2.6}
\end{equation*}
$$

with $\varepsilon=\frac{2 \alpha}{a^{2}}$, we obtain

$$
\begin{aligned}
& \frac{1}{2}\left\|u_{n}\right\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \\
& \leq \frac{1}{2}\left\|u_{0 n}\right\|_{L^{2}(I)}^{2}+\frac{a^{2}}{4 \alpha} \int_{0}^{t}\|f(s)\|_{L^{2}(I)}^{2} \mathrm{~d} s \\
& +\frac{\alpha}{a^{2}} \int_{0}^{t}\left\|u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s+\frac{\beta}{2} \int_{0}^{t}\left\|u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s
\end{aligned}
$$

using Poincaré's inequality

$$
\left\|u_{n}\right\|_{L^{2}(I)}^{2} \leq \frac{a^{2}}{2}\left\|\partial_{x} u_{n}\right\|_{L^{2}(I)}^{2}
$$

then

$$
\frac{\alpha}{a^{2}}\left\|u_{n}\right\|_{L^{2}(I)}^{2} \leq \frac{\alpha}{2}\left\|\partial_{x} u_{n}\right\|_{L^{2}(I)}^{2}
$$

and we obtain,

$$
\begin{aligned}
& \left\|u_{n}\right\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \\
& \leq\left\|u_{0 n}\right\|_{L^{2}(I)}^{2}+\frac{a^{2}}{2 \alpha} \int_{0}^{t}\|f(s)\|_{L^{2}(I)}^{2} \mathrm{~d} s+\beta \int_{0}^{t}\left\|u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|u_{n}\right\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \\
& \leq\left\|u_{0 n}\right\|_{L^{2}(I)}^{2}+\frac{a^{2}}{2 \alpha} \int_{0}^{t}\|f(s)\|_{L^{2}(I)}^{2} \mathrm{~d} s \\
& \quad+\beta \int_{0}^{t}\left(\left\|u_{n}(s)\right\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{s}\left\|\partial_{x} u_{n}(\tau)\right\|_{L^{2}(I)}^{2} \mathrm{~d} \tau\right) \mathrm{d} s
\end{aligned}
$$

As the sequence $\left(u_{0 n}\right)$ converges in $H_{0}^{1}(I)$ to u_{0} (see Remark 2.2) and $f \in L^{2}(R)$, there exists a positive constant C_{1} independent of n such that

$$
\left\|u_{0 n}\right\|_{L^{2}(I)}^{2}+\frac{a^{2}}{2 \alpha}\|f\|_{L^{2}(R)}^{2} \leq C_{1}
$$

and

$$
\begin{aligned}
& \left\|u_{n}\right\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \\
& \leq C_{1}+\beta \int_{0}^{t}\left(\left\|u_{n}(s)\right\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{s}\left\|\partial_{x} u_{n}(\tau)\right\|_{L^{2}(I)}^{2} \mathrm{~d} \tau\right) \mathrm{d} s
\end{aligned}
$$

then by Gronwall's inequality (see Corollary 1.33),

$$
\left\|u_{n}\right\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \leq C_{1} \exp (\beta t)
$$

Taking $K_{1}=C_{1} \exp (\beta T)$, we obtain

$$
\left\|u_{n}\right\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x} v_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \leq K_{1}
$$

Lemma 2.5. There exists a positive constant K_{2} independent of n, such that for all $t \in[0, T]$

$$
\left\|\partial_{x} u_{n}\right\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x}^{2} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \leq K_{2}
$$

Proof. As $-\partial_{x}^{2} e_{j}=\lambda_{j} e_{j}$, we deduce that

$$
\sum_{j=1}^{n} c_{j}(t) \lambda_{j} e_{j}=-\sum_{j=1}^{n} c_{j}(t) \partial_{x}^{2} e_{j}=-\partial_{x}^{2} u_{n}(t)
$$

then, multiplying both sides of (2.4) by $c_{j} \lambda_{j}$ and summing for $j=1, \ldots, n$, we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{0}^{a}\left(\partial_{x} u_{n}\right)^{2} \mathrm{~d} x+q(t) \int_{0}^{a}\left(\partial_{x}^{2} u_{n}\right)^{2} \mathrm{~d} x \tag{2.7}\\
& =-\int_{0}^{a} f \partial_{x}^{2} u_{n} \mathrm{~d} x+\int_{0}^{a} r(t, x) \partial_{x} u_{n} \partial_{x}^{2} u_{n} \mathrm{~d} x+p(t) \int_{0}^{a} u_{n} \partial_{x} u_{n} \partial_{x}^{2} u_{n} \mathrm{~d} x
\end{align*}
$$

Using Cauchy-Schwartz inequality, (2.6) with $\varepsilon=\alpha / 2$ leads to

$$
\begin{align*}
\left|\int_{0}^{a} f \partial_{x}^{2} u_{n} \mathrm{~d} x\right| & \leq\left(\int_{0}^{a}\left|\partial_{x}^{2} u_{n}\right|^{2} \mathrm{~d} x\right)^{1 / 2}\left(\int_{0}^{a}|f|^{2} \mathrm{~d} x\right)^{1 / 2} \tag{2.8}\\
& \leq \frac{\alpha}{4} \int_{0}^{a}\left|\partial_{x}^{2} u_{n}\right|^{2} \mathrm{~d} x+\frac{1}{\alpha} \int_{0}^{a}|f|^{2} \mathrm{~d} x
\end{align*}
$$

By (2.2) and inequality (2.6) with $\varepsilon=\frac{\alpha}{2}$, it follows that

$$
\begin{equation*}
\left|\int_{0}^{a} r(t, x) \partial_{x} u_{n} \partial_{x}^{2} u_{n} \mathrm{~d} x\right| \leq \frac{\beta^{2}}{\alpha} \int_{0}^{a}\left|\partial_{x} u_{n}\right|^{2} \mathrm{~d} x+\frac{\alpha}{4} \int_{0}^{a}\left|\partial_{x}^{2} u_{n}(s)\right| \mathrm{d} x . \tag{2.9}
\end{equation*}
$$

Now, we have to estimate the last term of (2.7). An integration by parts gives

$$
\begin{aligned}
\int_{0}^{a} u_{n} \partial_{x} u_{n} \partial_{x}^{2} u_{n} \mathrm{~d} x & =\int_{0}^{a} u_{n} \partial_{x}\left(\frac{1}{2}\left(\partial_{x} u_{n}\right)^{2}\right) \mathrm{d} x \\
& =-\frac{1}{2} \int_{0}^{a}\left(\partial_{x} u_{n}\right)^{3} \mathrm{~d} x
\end{aligned}
$$

Since $\partial_{x} u_{n}$ satisfies $\int_{0}^{a} \partial_{x} u_{n} \mathrm{~d} x=0$ we deduce that the continuous function $\partial_{x} u_{n}$ is zero at some point $y_{0 n} \in(0, a)$, and by integrating $2 \partial_{x} u_{n} \partial_{x}^{2} u_{n}$ between $y_{0 n}$ and x, we obtain

$$
\left|\partial_{x} u_{n}\right|^{2}=\left|\int_{y 0_{n}}^{x} \partial_{x}\left(\partial_{x} u_{n}\right)^{2} \mathrm{~d} x\right|=2\left|\int_{y_{0}}^{x} \partial_{x} u_{n} \partial_{x}^{2} u_{n} \mathrm{~d} x\right|,
$$

the Cauchy-Schwarz inequality gives

$$
\left\|\partial_{x} u_{n}\right\|_{L^{\infty}(I)}^{2} \leq 2\left\|\partial_{x} u_{n}\right\|_{L^{2}(I)}\left\|\partial_{x}^{2} u_{n}\right\|_{L^{2}(I)}
$$

But

$$
\left\|\partial_{x} u_{n}\right\|_{L^{3}(I)}^{3} \leq\left\|\partial_{x} u_{n}\right\|_{L^{2}(I)}^{2}\left\|\partial_{x} u_{n}\right\|_{L^{\infty}(I)}
$$

So, (2.2) yields

$$
\left|\int_{0}^{a} p(t) u_{n} \partial_{x} u_{n} \partial_{x}^{2} u_{n} \mathrm{~d} x\right| \leq\left(\int_{0}^{a}\left|\partial_{x}^{2} u_{n}\right|^{2} \mathrm{~d} x\right)^{1 / 4}\left(\beta^{4 / 5} \int_{0}^{a}\left|\partial_{x} u_{n}\right|^{2} \mathrm{~d} x\right)^{5 / 4}
$$

Finally, thanks to Young's inequality $|A B| \leq \frac{|A|^{p}}{p}+\frac{|B|^{p^{\prime}}}{p^{\prime}}$, with $1<p<\infty$ and $p^{\prime}=\frac{p}{p-1}$, we have

$$
\begin{aligned}
|A B| & =\left|\left(\alpha^{1 / p} A\right)\left(\alpha^{1 / p^{\prime}} \frac{B}{\alpha}\right)\right| \\
& \leq \frac{\alpha}{p}|A|^{p}+\frac{\alpha}{p^{\prime} \alpha^{p^{\prime}}}|B|^{p^{\prime}} .
\end{aligned}
$$

Choosing $p=4$ (then $p^{\prime}=\frac{4}{3}$) in the previous formula,

$$
A=\left(\int_{0}^{a}\left|\partial_{x}^{2} u_{n}\right|^{2} \mathrm{~d} x\right)^{1 / 4}
$$

and

$$
B=\left(\beta^{4 / 5} \int_{0}^{a}\left|\partial_{x} u_{n}\right|^{2} \mathrm{~d} x\right)^{5 / 4}
$$

the estimate of the last term of 2.7 becomes

$$
\begin{equation*}
\left|\int_{0}^{a} p(t) u_{n} \partial_{x} u_{n} \partial_{x}^{2} u_{n} \mathrm{~d} x\right| \leq \frac{\alpha}{4} \int_{0}^{a}\left|\partial_{x}^{2} u_{n}\right|^{2} \mathrm{~d} x+\frac{3}{4} \frac{\beta^{4 / 3}}{\alpha^{1 / 3}}\left(\int_{0}^{a}\left|\partial_{x} u_{n}\right|^{2} \mathrm{~d} x\right)^{5 / 3} \tag{2.10}
\end{equation*}
$$

Let us return to inequality (2.7): By integrating between 0 and t, from the estimates (2.8), 2.9), and 2.10 we obtain

$$
\begin{aligned}
& \frac{1}{2}\left\|\partial_{x} u_{n}\right\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x}^{2} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \\
& \leq \frac{1}{2}\left\|\partial_{x} u_{0 n}\right\|_{L^{2}(I)}^{2}+\frac{\alpha}{4} \int_{0}^{t}\left\|\partial_{x}^{2} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s+\frac{1}{\alpha} \int_{0}^{t}\|f(s)\|_{L^{2}(I)}^{2} \mathrm{~d} s \\
& \quad+\frac{\beta^{2}}{\alpha} \int_{0}^{t}\left\|\partial_{x} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s+\frac{\alpha}{4} \int_{0}^{t}\left\|\partial_{x}^{2} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \\
& \quad+\frac{\alpha}{4} \int_{0}^{t}\left\|\partial_{x}^{2} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s+\frac{3 \beta^{4 / 3}}{4 \alpha^{1 / 3}} \int_{0}^{t}\left(\left\|\partial_{x} u_{n}(s)\right\|_{L^{2}(I)}^{2}\right)^{5 / 3} \mathrm{~d} s
\end{aligned}
$$

multiplying both sides of the last inequality by 4 , we obtain

$$
\begin{aligned}
& 2\left\|\partial_{x} u_{n}\right\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x}^{2} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \\
& \leq 2\left\|\partial_{x} u_{0 n}\right\|_{L^{2}(I)}^{2}+\frac{4}{\alpha} \int_{0}^{t}\|f(s)\|_{L^{2}(I)}^{2} \mathrm{~d} s \\
& \quad+C_{2} \int_{0}^{t}\left(\left\|\partial_{x} u_{n}(s)\right\|_{L^{2}(I)}^{2}\right)^{5 / 3} \mathrm{~d} s+C_{3} \int_{0}^{t}\left\|\partial_{x} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s
\end{aligned}
$$

where $C_{2}=\frac{3 \beta^{4 / 3}}{\alpha^{1 / 3}}$ and $C_{3}=\frac{4 \beta^{2}}{\alpha}$.
Observe that $f \in L^{2}(R)$), and $\left\|\partial_{x} u_{0 n}\right\|_{L^{2}(I)}^{2}$ is bounded (see Remark 2.2). Then, there exists a constant C_{4} such that

$$
\begin{aligned}
& \left\|\partial_{x} u_{n}\right\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x}^{2} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \\
& \leq C_{4}+C_{2} \int_{0}^{t}\left(\left\|\partial_{x} u_{n}(s)\right\|_{L^{2}(I)}^{2}\right)^{2 / 3}\left\|\partial_{x} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s+C_{3} \int_{0}^{t}\left\|\partial_{x} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s
\end{aligned}
$$

Consequently, the function

$$
\varphi(t)=\left\|\partial_{x} u_{n}\right\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x}^{2} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s
$$

satisfies the inequality

$$
\varphi(t) \leq C_{4}+\int_{0}^{t}\left(C_{2}\left\|\partial_{x} u_{n}(s)\right\|_{L^{2}(I)}^{4 / 3}+C_{3}\right) \varphi(s) \mathrm{d} s
$$

Gronwall's inequality shows that

$$
\varphi(t) \leq C_{4} \exp \left(\int_{0}^{t}\left(C_{2}\left\|\partial_{x} u_{n}(s)\right\|_{L^{2}(I)}^{4 / 3}+C_{3}\right) \mathrm{d} s\right)
$$

According to Lemma 2.4 the integral $\int_{0}^{t}\left\|\partial_{x} u_{n}\right\|_{L^{2}(I)}^{4 / 3} \mathrm{~d} s$ is bounded by a constant independent of $n($ and $t)$.

So, there exists a positive constant K_{2} such that

$$
\left\|\partial_{x} u_{n}\right\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x}^{2} u_{n}(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \leq K_{2}
$$

Lemma 2.6. There exists a positive constant K_{3} independent of n, such that for all $t \in[0, T]$

$$
\left\|\partial_{t} u_{n}\right\|_{L^{2}(R)}^{2} \leq K_{3} .
$$

Proof. Let

$$
g_{n}=f-p(t) u_{n} \partial_{x} u_{n}+q(t) \partial_{x}^{2} u_{n}-r(t, x) \partial_{x} u_{n}
$$

To show that $\partial_{t} u_{n}$ is bounded in $L^{2}(R)$, we will first show that g_{n} is bounded in $L^{2}(R)$.
According to Lemmas 2.4 and 2.5, the terms $r(t, x) \partial_{x} u_{n}$ and $\beta(t) \partial_{x}^{2} u_{n}$ are bounded in $L^{2}(R)$. On the other hand, by the hypothesis $f \in L^{2}(R)$. It remains only to show that $p(t) u_{n} \partial_{x} u_{n} \in L^{2}(R)$.

Lemma 2.4 proves that $\left\|u_{n}\right\|_{L^{\infty}\left(0, T ; H_{0}^{1}(I)\right)}^{2}$ is bounded. Then, using the injection of $H_{0}^{1}(I)$ in $L^{\infty}(I)$, we obtain

$$
\begin{aligned}
\left|\int_{0}^{T} \int_{0}^{a}\left(p(t) u_{n} \partial_{x} u_{n}\right)^{2} \mathrm{~d} x \mathrm{~d} t\right| & \leq \beta^{2} \int_{0}^{T}\left(\left\|u_{n}\right\|_{L^{\infty}(I)}^{2} \int_{0}^{a}\left|\partial_{x} u_{n}\right|^{2} \mathrm{~d} x\right) \mathrm{d} t \\
& \leq \beta^{2} C_{I} \int_{0}^{T}\left\|u_{n}\right\|_{H_{0}^{1}(I)}^{2}\left\|\partial_{x} u_{n}\right\|_{L^{2}(I)}^{2} \mathrm{~d} t \\
& \leq \beta^{2} C_{I}\left\|u_{n}\right\|_{L^{\infty}\left(0, T ; H_{0}^{1}(I)\right)}^{2}\left\|\partial_{x} u_{n}\right\|_{L^{2}(R)}^{2}
\end{aligned}
$$

where C_{I} is a constant independent of n. Hence g_{n} is bounded in $L^{2}(R)$. So, $\partial_{t} u_{n}$ is also bounded in $L^{2}(R)$.

Indeed, from (2.4) for $j=1, \ldots, n$, we have

$$
\begin{aligned}
\int_{0}^{a} \partial_{t} u_{n} e_{j} \mathrm{~d} x & =\int_{0}^{a}\left(f-p(t) u_{n} \partial_{x} u_{n}+q(t) \partial_{x}^{2} u_{n}-r(t, x) \partial_{x} u_{n}\right) e_{j} \mathrm{~d} x \\
& =\int_{0}^{a} g_{n} e_{j} \mathrm{~d} x
\end{aligned}
$$

multiplying both sides by c_{j}^{\prime} and summing for $j=1, \ldots, n$,

$$
\left\|\partial_{t} u_{n}\right\|_{L^{2}(I)}^{2}=\int_{0}^{a} g_{n} \partial_{t} u_{n} \mathrm{~d} x
$$

we deduce that $\left\|\partial_{t} u_{n}\right\|_{L^{2}(R)} \leq\left\|g_{n}\right\|_{L^{2}(R)}$.

2.1.4 Existence and uniqueness

Lemmas 2.4, 2.5 and 2.6 show that the Galerkin approximation u_{n} is bounded in $L^{\infty}\left(0, T, L^{2}(I)\right)$, and in $L^{2}\left(0, T, H^{2}(I)\right)$, and $\partial_{t} u_{n}$ is bounded in $L^{2}(R)$. So, it is possible to extract a subsequence from u_{n} (that we continue to denote u_{n}) such that

$$
\begin{gather*}
u_{n} \rightarrow u \quad \text { weakly in } L^{2}\left(0, T, H_{0}^{1}(I)\right) \tag{2.11}\\
u_{n} \rightarrow u \quad \text { strongly in } L^{2}\left(0, T, L^{2}(I)\right) \text { and a.e. in } R, \tag{2.12}\\
\partial_{t} u_{n} \rightarrow \partial_{t} u \quad \text { weakly in } L^{2}(R) \tag{2.13}
\end{gather*}
$$

Lemma 2.7. Under the assumptions of Theorem 2.1, Problem (2.1) admits a weak solution $u \in H^{1,2}(R)$.

Proof. Note that (2.13) implies

$$
\int_{0}^{T} \int_{0}^{a} \partial_{t} u_{n} w \mathrm{~d} x \mathrm{~d} t \rightarrow \int_{0}^{T} \int_{0}^{a} \partial_{t} u w \mathrm{~d} x \mathrm{~d} t, \quad \forall w \in L^{2}(R)
$$

From (2.11) and 2.12,

$$
u_{n} \partial_{x} u_{n} \rightarrow u \partial_{x} u \quad \text { weakly in } \quad L^{2}(R),
$$

then

$$
\int_{0}^{T} \int_{0}^{a} p(t) u_{n} \partial_{x} u_{n} w \mathrm{~d} x \mathrm{~d} t \rightarrow \int_{0}^{T} \int_{0}^{a} p(t) u \partial_{x} u w \mathrm{~d} x \mathrm{~d} t, \quad \forall w \in L^{2}(R)
$$

and

$$
\int_{0}^{T} \int_{0}^{a} r(t, x) \partial_{x} u_{n} w \mathrm{~d} x \mathrm{~d} t \rightarrow \int_{0}^{T} \int_{0}^{a} r(t, x) \partial_{x} u w \mathrm{~d} x \mathrm{~d} t, \quad \forall w \in L^{2}(R)
$$

Our goal is to use these properties to pass to the limit. In Problem (2.4), when $n \rightarrow+\infty$, for each fixed j, we have

$$
\begin{align*}
& \int_{0}^{a}\left(\partial_{t} u+p(t) u \partial_{x} u\right) e_{j} \mathrm{~d} x+q(t) \int_{0}^{a} \partial_{x} u \partial_{x} e_{j} \mathrm{~d} x+\int_{0}^{a} r(t, x) \partial_{x} u e_{j} \mathrm{~d} x \tag{2.14}\\
& =\int_{0}^{a} f e_{j} \mathrm{~d} x
\end{align*}
$$

Since $\left(e_{j}\right)_{j \in \mathbb{N}}$ is a basis of $H_{0}^{1}(I)$, for all $w \in H_{0}^{1}(I)$, we can write

$$
w(t)=\sum_{k=1}^{\infty} b_{k}(t) e_{k}
$$

that is to say $w_{N}(t)=\sum_{k=1}^{N} b_{k}(t) e_{k} \rightarrow w(t)$ in $H_{0}^{1}(I)$ when $N \rightarrow+\infty$.
Multiplying (2.14) by b_{k} and summing for $k=1, \ldots, N$, then

$$
\begin{aligned}
& \int_{0}^{a}\left(\partial_{t} u+p(t) u \partial_{x} u\right) w_{N} \mathrm{~d} x+q(t) \int_{0}^{a} \partial_{x} u \partial_{x} w_{N} \mathrm{~d} x+\int_{0}^{a} r(t, x) \partial_{x} u w_{N} \mathrm{~d} x \\
& =\int_{0}^{a} f w_{N} \mathrm{~d} x
\end{aligned}
$$

Letting $N \rightarrow+\infty$, we deduce that

$$
\int_{0}^{a}\left(\partial_{t} u+p(t) u \partial_{x} u\right) w \mathrm{~d} x+q(t) \int_{0}^{a} \partial_{x} u \partial_{x} w \mathrm{~d} x+\int_{0}^{a} r(t, x) \partial_{x} u w \mathrm{~d} x=\int_{0}^{a} f w \mathrm{~d} x
$$

so, u satisfies the weak formulation (2.3) for all $w \in H_{0}^{1}(I)$ and $t \in[0 ; T]$.
Finally, we recall that, by hypothesis, $\lim _{n \rightarrow+\infty} u_{n}(0):=u_{0}$. This completes the proof of the "existence" part of Theorem 2.1.

Lemma 2.8. Under the assumptions of Theorem 2.1, the solution of Problem (2.1) is unique.

Proof. Let us observe that any solution $u \in H^{1,2}(R)$ of Problem (2.1) is in $L^{\infty}\left(0, T, L^{2}(I)\right)$. Indeed, it is not difficult to see that such a solution satisfies

$$
\frac{1}{2} \frac{d}{d t} \int_{0}^{a} u^{2} \mathrm{~d} x+q(t) \int_{0}^{a}\left(\partial_{x} u\right)^{2} \mathrm{~d} x-\frac{1}{2} \int_{0}^{a} \partial_{x} \gamma(t, x) u^{2} \mathrm{~d} x=\int_{0}^{a} f u \mathrm{~d} x
$$

because

$$
p(t) \int_{0}^{a} u^{2} \partial_{x} u \mathrm{~d} x=\frac{p(t)}{3} \int_{0}^{a} \partial_{x}(u)^{3} \mathrm{~d} x=0
$$

and

$$
\int_{0}^{a} r(t, x) \partial_{x} u u \mathrm{~d} x=\int_{0}^{a} r(t, x) \partial_{x}\left(\frac{u^{2}}{2}\right) \mathrm{d} x=-\frac{1}{2} \int_{0}^{a} \partial_{x} r(t, x) u^{2} \mathrm{~d} x
$$

Consequently (see the proof of Lemma 2.4)

$$
\begin{aligned}
& \|u\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x} u(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \\
& \leq\left\|u_{0}\right\|_{L^{2}(I)}^{2}+\frac{a^{2}}{2 \alpha} \int_{0}^{t}\|f(s)\|_{L^{2}(I)}^{2} \mathrm{~d} s+\beta \int_{0}^{t}\|u(s)\|_{L^{2}(I)}^{2} \mathrm{~d} s
\end{aligned}
$$

so,

$$
\begin{aligned}
& \|u\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x} u(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \\
& \leq\left\|u_{0}\right\|_{L^{2}(I)}^{2}+\frac{a^{2}}{2 \alpha} \int_{0}^{t}\|f(s)\|_{L^{2}(I)}^{2} \mathrm{~d} s \\
& \quad+\beta \int_{0}^{t}\left(\|u(s)\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{s}\left\|\partial_{x} u(\tau)\right\|_{L^{2}(I)}^{2} \mathrm{~d} \tau\right) \mathrm{d} s
\end{aligned}
$$

Then there exist a positive constant C such that

$$
\begin{aligned}
& \|u\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x} u(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \\
& \leq C+\beta \int_{0}^{t}\left(\|u(s)\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{s}\left\|\partial_{x} u(\tau)\right\|_{L^{2}(I)}^{2} \mathrm{~d} \tau\right) \mathrm{d} s
\end{aligned}
$$

Hence, Gronwall's lemma gives

$$
\|u\|_{L^{2}(I)}^{2}+\alpha \int_{0}^{t}\left\|\partial_{x} u(s)\right\|_{L^{2}(I)}^{2} \mathrm{~d} s \leq K
$$

where $K=C \exp (\beta T)$. This shows that $u \in L^{\infty}\left(0, T, L^{2}(I)\right)$ for all $f \in L^{2}(I)$.

Now, let $u_{1}, u_{2} \in H^{1,2}(R)$ be two solutions of (2.1). We put $u=u_{1}-u_{2}$. It is clear that $u \in L^{\infty}\left(0, T, L^{2}(I)\right)$. The equations satisfied by u_{1} and u_{2} lead to

$$
\int_{0}^{a}\left[\partial_{t} u w+\alpha(t) u w \partial_{x} u_{1}+p(t) u_{2} w \partial_{x} u+q(t) \partial_{x} u \partial_{x} w+r(t, x) w \partial_{x} u\right] \mathrm{d} x=0
$$

Taking, for $t \in[0, T], w=u$ as a test function, we deduce that

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\|u\|_{L^{2}(I)}^{2}+\beta(t)\left\|\partial_{x} u\right\|_{L^{2}(I)}^{2} \\
& =-\int_{0}^{a} r(t, x) u \partial_{x} u \mathrm{~d} x-p(t) \int_{0}^{a} u^{2} \partial_{x} u_{1} \mathrm{~d} x-p(t) \int_{0}^{a} u_{2} u \partial_{x} u \mathrm{~d} x \tag{2.15}
\end{align*}
$$

An integration by parts gives

$$
p(t) \int_{0}^{a} u^{2} \partial_{x} u_{1} \mathrm{~d} x=-2 p(t) \int_{0}^{a} u \partial_{x} u u_{1} \mathrm{~d} x
$$

then (2.15) becomes

$$
\frac{1}{2} \frac{d}{d t}\|u\|_{L^{2}(I)}^{2}+q(t)\left\|\partial_{x} u\right\|_{L^{2}(I)}^{2}=\frac{1}{2} \int_{0}^{a} \partial_{x} r(t, x) u^{2} \mathrm{~d} x+\int_{0}^{a} p(t)\left(2 u_{1}-u_{2}\right) u \partial_{x} u \mathrm{~d} x
$$

By (2.2) and inequality (2.6) with $\varepsilon=2 \alpha$, it follows that

$$
\begin{aligned}
& \left|\int_{0}^{a} p(t)\left(2 u_{1}-u_{2}\right) u \partial_{x} u \mathrm{~d} x\right| \\
& \leq \frac{\beta^{2}}{4 \alpha}\left(2\left\|u_{1}\right\|_{L^{\infty}(I)}+\left\|u_{2}\right\|_{L^{\infty}(I)}\right)^{2}\|u\|_{L^{2}(I)}^{2}+\alpha\left\|\partial_{x} u\right\|_{L^{2}(I)}^{2}
\end{aligned}
$$

Then, using the injection of $H_{0}^{1}(I)$ in $L^{\infty}(I)$, we obtain

$$
\begin{aligned}
& \left|\int_{0}^{a} p(t)\left(2 u_{1}-u_{2}\right) u \partial_{x} u \mathrm{~d} x\right| \\
& \leq \frac{\beta^{2}}{4 \alpha}\left(2\left\|u_{1}\right\|_{L^{\infty}\left(0, T, H_{0}^{1}(I)\right)}+\left\|u_{2}\right\|_{L^{\infty}\left(0, T, H_{0}^{1}(I)\right)}\right)^{2}\|u\|_{L^{2}(I)}^{2}+\alpha\left\|\partial_{x} u\right\|_{L^{2}(I)}^{2}
\end{aligned}
$$

Furthermore,

$$
\frac{1}{2} \int_{0}^{a} \partial_{x} \gamma(t, x) u^{2} \mathrm{~d} x \leq \frac{\beta}{2}\|u\|_{L^{2}(I)}^{2}
$$

So,

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\|u\|_{L^{2}(I)}^{2}+\alpha\left\|\partial_{x} u\right\|_{L^{2}(I)}^{2} \\
& \leq \frac{\beta^{2}}{4 \alpha}\left(2\left\|u_{1}\right\|_{L^{\infty}\left(0, T, H_{0}^{1}(I)\right)}+\left\|u_{2}\right\|_{L^{\infty}\left(0, T, H_{0}^{1}(I)\right)}\right)^{2}\|u\|_{L^{2}(I)}^{2} \\
& \quad+\alpha\left\|\partial_{x} u\right\|_{L^{2}(I)}^{2}+\frac{\beta}{2}\|u\|_{L^{2}(I)}^{2} .
\end{aligned}
$$

We deduce that there exists a positive constant D, such that

$$
\frac{1}{2} \frac{d}{d t}\|u\|_{L^{2}(I)}^{2} \leq D\|u\|_{L^{2}(I)}^{2}
$$

and Gronwall's lemma leads to $u=0$. This completes the proof.

2.2 Burgers equation in a domain that can be transformed into a rectangle

Let $\Omega \subset \mathbb{R}^{2}$ be the domain

$$
\begin{gathered}
\Omega=\left\{(t, x) \in \mathbb{R}^{2}: 0<t<T, x \in I_{t}\right\} \\
I_{t}=\left\{x \in \mathbb{R}: \varphi_{1}(t)<x<\varphi_{2}(t), t \in(0, T)\right\}
\end{gathered}
$$

In this section, we assume that $\varphi_{1}(0) \neq \varphi_{2}(0)$. In other words

$$
\begin{equation*}
\varphi_{1}(t)<\varphi_{2}(t) \quad \text { for all } t \in[0, T] \tag{2.16}
\end{equation*}
$$

and we consider the Burgers problem

$$
\left\{\begin{array}{l}
\partial_{t} u(t, x)+c(t) u(t, x) \partial_{x} u(t, x)-\partial_{x}^{2} u(t, x)=f(t, x) \quad(t, x) \in \Omega \tag{2.17}\\
u(0, x)=0 \quad x \in I_{0}=\left(\varphi_{1}(0), \varphi_{2}(0)\right) \\
u\left(t, \varphi_{1}(t)\right)=u\left(t, \varphi_{2}(t)\right)=0 \quad t \in(0, T)
\end{array}\right.
$$

in $\Omega \subset \mathbb{R}^{2}$, such that

$$
\begin{equation*}
c_{1} \leq c(t) \leq c_{2}, \quad \text { for all } t \in[0, T] \tag{2.18}
\end{equation*}
$$

Figure 2.1: Domain that can be transformed into rectangle
where c_{1} and c_{2} are positive constants and φ_{1}, φ_{2} are functions defined on $[0, T]$ belonging to $C^{1}(] 0, T[)$.

Using the results obtained in the first part of this chapter, we look for conditions on the functions $\left(\varphi_{i}\right)_{i=1,2}$ which guarantee that Problem 2.17) admits a unique solution $u \in H^{1,2}(\Omega)$.

In order to solve Problem (2.17), we will follow the method which was used, for example, in Sadallah[42] and Clark et al. [14]. This method consists in proving that this problem admits a unique solution when Ω is transformed into a rectangle, using a change of variables preserving the anisotropic Sobolev space $H^{1,2}(\Omega)$.

To establish the existence and uniqueness of the solution to (2.17), we impose the assumption

$$
\begin{equation*}
\left|\varphi^{\prime}(t)\right| \leq c \quad \text { for all } t \in[0, T] \tag{2.19}
\end{equation*}
$$

where c is a positive constant, and $\varphi(t)=\varphi_{2}(t)-\varphi_{1}(t)$ for all $t \in[0, T]$.
The result related to the existence of the solution u of (2.17) in a rectangle is obtained
thanks to a personal (and detailed) communication of professor Luc Tartar about the Burgers equation with constant coefficients in a rectangle. The authors would like to thank him for his appreciate comments and hints.

Theorem 2.9. If $f \in L^{2}(\Omega)$ and $c(t),\left(\varphi_{i}\right)_{i=1,2}$ satisfy the assumptions 2.18, (2.16) and (2.19), then Problem 2.17) admits a unique solution $u \in H^{1,2}(\Omega)$.

The proof of Theorem 2.9 needs an appropriate change of variables which allows us to use Theorem 2.1.

Proof. The change of variables: $\Omega \rightarrow R$

$$
(t, x) \mapsto(t, y)=\left(t, \frac{x-\varphi_{1}(t)}{\varphi_{2}(t)-\varphi_{1}(t)}\right)
$$

transforms Ω into the rectangle $R=(0, T) \times(0,1)$. Putting $u(t, x)=v(t, y)$ and $f(t, x)=$ $g(t, y)$, Problem (2.17) becomes

$$
\begin{cases}\partial_{t} v(t, y)+p(t) v(t, y) \partial_{y} v(t, y)-q(t) \partial_{y}^{2} v(t, y)+r(t, y) \partial_{y} v(t, y) \tag{2.20}\\ & =g(t, y) \quad(t, y) \in R \\ v(0, y)=0 \quad y \in(0,1) \\ v(t, 0)=v(t, 1)=0 \quad t \in(0, T)\end{cases}
$$

where

$$
\begin{gathered}
\varphi(t)=\varphi_{2}(t)-\varphi_{1}(t), \quad p(t)=\frac{c(t)}{\varphi(t)} \\
q(t)=\frac{1}{\varphi^{2}(t)}, \quad r(t, y)=-\frac{y \varphi^{\prime}(t)+\varphi_{1}^{\prime}(t)}{\varphi(t)} .
\end{gathered}
$$

This change of variables preserves the spaces $H^{1,2}$ and L^{2}. In other words

$$
\begin{aligned}
f \in L^{2}(\Omega) & \Leftrightarrow g \in L^{2}(R) \\
u \in H^{1,2}(\Omega) & \Leftrightarrow v \in H^{1,2}(R)
\end{aligned}
$$

According to (2.18) and 2.19), the functions p, q and r satisfy the following conditions

$$
\begin{array}{cl}
\alpha<p(t)<\beta, & \forall t \in[0, T] \\
\alpha<q(t)<\beta, & \forall t \in[0, T] \\
\left|\partial_{y} r(t, y)\right| \leq \beta, & \forall(t, y) \in R
\end{array}
$$

where α and β are positive constants.
So, Problem 2.17 is equivalent to Problem 2.20, and by Theorem 2.1 Problem (2.20) admits a solution $v \in H^{1,2}(R)$. Then, Problem (2.17) in the domain Ω admits a solution $u \in H^{1,2}(\Omega)$.

