
Chapter 2

Existence of solutions to Burgers

equation in domain that can be

transformed into rectangle

In this chapter, we consider a non homogeneous Burgers problem with time variable

coefficients subject to Cauchy-Dirichlet boundary conditions in a non rectangular domain.

This domain will be transformed into a rectangle by a regular change of variables. The

right-hand side of the equation is taken in L2, and the initial condition is in the Sobolev

space H1
0 . The goal is to establish the existence, the uniqueness and the regularity of the

solution.
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2.1 Existence of solutions to a parabolic problem

with variable coefficients in a rectangle

In this section, we consider the semilinear parabolic problem






























∂tu(t, x) + p(t)u(t, x)∂xu(t, x)− q(t)∂2
xu(t, x)+

r(t, x)∂xu(t, x) = f(t, x) (t, x) ∈ R,

u(0, x) = u0(x) x ∈ I,

u(t, a) = u(t, 0) = 0 t ∈ (0, T ),

(2.1)

in the rectangle R = (0, T )× I where I = (0, a), a ∈ R+ (T is a positive finite number);

f ∈ L2(R) and u0 ∈ H1
0 (I) are given functions.

We assume that the functions p, q depend only on t and the function r depends on t

and x. We also suppose that there exist two positive constants α and β, such that

α ≤ p(t) ≤ β, α ≤ q(t) ≤ β, ∀t ∈ [0, T ]

and |∂xr(t, x)| ≤ β ou |r(t, x)| ≤ β ∀(t, x) ∈ R.
(2.2)

In a paper by Morandi Cecchi et al. [37], the main result was the existence and uniqueness

of a solution to the Burgers problem (with constant coefficients) in the anistropic Sobolev

space

H1,2(R) =
{

u ∈ L2(R) : ∂tu ∈ L2(R), ∂xu ∈ L2(R), ∂2
xu ∈ L2(R)

}

whereR is a rectangle. The authors used a wrong inequality (namely
∫

Ω

M(u−M)+(t) dx ≤

M‖(u − M)+(t)‖2) at the end of the proof of Theorem 2 (maximum principle); the in-

equality appears in the line 14, page 165 (and line 15 page 167). To rectify this part of the

proof it suffices to show that u ∈ L∞(Q). The proof given by the authors remains true

only when f = 0 (but this was not the objective of their paper), this case being treated

by Bressan in [9]. However, in our work, using another method, we prove a more general

result concerning the existence, uniqueness and regularity of a solution to the Burgers

problem with variable coefficients in a rectangle. Then, the existence, uniqueness and

regularity of a solution to the Burgers problem in a domain that can be transformed into

a rectangle.
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The main result of This section is as follows:

Theorem 2.1. If u0 ∈ H1
0 (I), f ∈ L2(R) and p, q, r satisfy the assumption (2.2), then

Problem (2.1) admits a unique solution u ∈ H1,2(R).

2.1.1 Resolution of the parabolic problem (2.1)

The proof of Theorem 2.1 is based on the Faedo-Galerkin method. We introduce approx-

imate solution by reduction to the finite dimension. By the Faedo-Galerkin method, we

obtain the existence of an approximate solution using an existence theorem of solutions

for a system of ordinary differential equations. We approximate the equation of Problem

(2.1) by a simple equation. Then we make the passage to the limit using a compactness

argument.

Multiplying the equation of Problem (2.1) by a test function w ∈ H1
0 (I), and integrat-

ing by parts from 0 to a, we obtain

a
∫

0

∂tuw dx+ q(t)

a
∫

0

∂xu∂xw dx+ p(t)

a
∫

0

u∂xuw dx+

a
∫

0

r(t, x)∂xuw dx

=

a
∫

0

fw dx, ∀w ∈ H1
0 (I), t ∈ (0, T ).

(2.3)

This is the weak formulation of Problem (2.1). The solution of (2.3) satisfying the

conditions of Problem (2.1) is called weak solution.

To prove the existence of a weak solution to (2.1), we choose the basis (ej)j∈N⋆ of L2(I)

defined as a subset of the eigenfunctions of −∂2
x for the Dirichlet problem

−∂2
xej = λjej, j ∈ N

∗,

ej = 0 on Γ = {0, a}.

More precisely,

ej(x) =

√
2√
a
sin

jπx

a
, λj = (

jπ

a
)2, for j ∈ N

∗.
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As the family (ej)j∈N⋆ is an orthonormal basis of L2(I), then it is an orthogonal basis of

H1
0 (I). In particular, for v ∈ L2(R), we can write

v =
∞
∑

k=1

bk(t)ek,

where bk = (v, ek)L2(I) and the series converges in L2(I). Then, we introduce the approx-

imate solution un by

un(t) =
n

∑

j=1

cj(t)ej,

un(0) = u0n =
n

∑

j=1

cj(0)ej,

which has to satisfy the approximate problem











































a
∫

0

(∂tun + p(t)un∂xun) ej dx+ q(t)

a
∫

0

∂xun∂xej dx

+

a
∫

0

r(t, x)∂xunej dx =

a
∫

0

fej dx,

un(0) = u0n.

(2.4)

for all j = 1, . . . , n, and 0 ≤ t ≤ T .

Remark 2.2. The coefficients cj(0) (which depend on j and n) will be chosen such that

the sequence (u0n) converges in H1
0 (I) to u0.

2.1.2 Solution of the approximate problem

Lemma 2.3. For all j, there exists a unique solution un of Problem (2.4).

Proof. As e1, · · · , en are orthonormal in L2(I), then

a
∫

0

∂tunej dx =
n
∑

i=1

c′i(t)

a
∫

0

eiej dx

= c′j(t).
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On the other hand,

−∂2
xei = λiei,

then

∂2
xun(t) = −

n
∑

i=1

ci(t)λiei.

Therefore, for all t ∈ [0, T ]

−q(t)

a
∫

0

∂2
xunej dx = q(t)

n
∑

i=1

ci(t)λi

a
∫

0

eiej dx

= q(t)λjcj(t).

Now, if we introduce

fj(t) =

a
∫

0

fej dx,

kj(t) = −p(t)

a
∫

0

un∂xunej dx,

and

hj(t) = −
a

∫

0

r(t, x)∂xunej dx,

for j ∈ {1, . . . , n}, then (2.4) is equivalent to the following system of n uncoupled linear

ordinary differential equations:

c′j(t) = −q(t)λjcj(t) + kj(t) + hj(t) + fj(t), j = 1, ..., n. (2.5)

The terms kj(t), hj(t) are well defined (because ej and r(t, x) are regular) and fj is in-

tegrable (because f ∈ L2(R)). Taking into account the initial condition cj(0), for each

fixed j ∈ {1, . . . , n}, (2.5) has a unique regular solution cj in some interval (0, T ′) with

T ′ ≤ T . In fact, we can prove here that T ′ = T .
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2.1.3 A priori estimate

Lemma 2.4. There exists a positive constant K1 independent of n, such that for all

t ∈ [0, T ]

‖un‖2L2(I) + α

t
∫

0

‖∂xun(s)‖2L2(I) ds ≤ K1.

Proof. Multiplying (2.4) by cj and summing for j = 1, . . . , n, we obtain

1

2

d

dt

a
∫

0

u2
n dx+ q(t)

a
∫

0

(∂xun)
2 dx− 1

2

a
∫

0

∂xr(t, x)u
2
n dx =

a
∫

0

fun dx.

Indeed, because of the boundary conditions, we have

p(t)

a
∫

0

u2
n∂xun dx =

p(t)

3

a
∫

0

∂x(un)
3 dx = 0,

and an integration by parts gives

−1

2

a
∫

0

∂xr(t, x)u
2
n dx =

a
∫

0

r(t, x)un∂xun dx.

Then, by integrating with respect to t (t ∈ (0, T )), and according to (2.2), we find that

1

2
‖un‖2L2(I) + α

t
∫

0

‖∂xun(s)‖2L2(I) ds

≤ 1

2
‖u0n‖2L2(I) +

t
∫

0

‖f(s)‖L2(I)‖un(s)‖L2(I) ds+
β

2

t
∫

0

‖un(s)‖2L2(I) ds.

By the elementary inequality

|rs| ≤ ε

2
r2 +

s2

2ε
, ∀r, s ∈ R, ∀ε > 0, (2.6)
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with ε =
2α

a2
, we obtain

1

2
‖un‖2L2(I) + α

t
∫

0

‖∂xun(s)‖2L2(I) ds

≤ 1

2
‖u0n‖2L2(I) +

a2

4α

t
∫

0

‖f(s)‖2L2(I) ds

+
α

a2

t
∫

0

‖un(s)‖2L2(I) ds+
β

2

t
∫

0

‖un(s)‖2L2(I) ds,

using Poincaré’s inequality

‖un‖2L2(I) ≤
a2

2
‖∂xun‖2L2(I),

then
α

a2
‖un‖2L2(I) ≤

α

2
‖∂xun‖2L2(I),

and we obtain,

‖un‖2L2(I) + α

t
∫

0

‖∂xun(s)‖2L2(I) ds

≤ ‖u0n‖2L2(I) +
a2

2α

t
∫

0

‖f(s)‖2L2(I) ds+ β

t
∫

0

‖un(s)‖2L2(I) ds,

and

‖un‖2L2(I) + α

t
∫

0

‖∂xun(s)‖2L2(I) ds

≤ ‖u0n‖2L2(I) +
a2

2α

t
∫

0

‖f(s)‖2L2(I) ds

+ β

t
∫

0



‖un(s)‖2L2(I) + α

s
∫

0

‖∂xun(τ)‖2L2(I) dτ



 ds.

As the sequence (u0n) converges in H1
0 (I) to u0 (see Remark 2.2) and f ∈ L2(R), there

exists a positive constant C1 independent of n such that

‖u0n‖2L2(I) +
a2

2α
‖f‖2L2(R) ≤ C1
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and

‖un‖2L2(I) + α

t
∫

0

‖∂xun(s)‖2L2(I) ds

≤ C1 + β

t
∫

0



‖un(s)‖2L2(I) + α

s
∫

0

‖∂xun(τ)‖2L2(I) dτ



 ds,

then by Gronwall’s inequality (see Corollary 1.33),

‖un‖2L2(I) + α

t
∫

0

‖∂xun(s)‖2L2(I) ds ≤ C1 exp(βt).

Taking K1 = C1 exp(βT ), we obtain

‖un‖2L2(I) + α

t
∫

0

‖∂xvn(s)‖2L2(I) ds ≤ K1.

Lemma 2.5. There exists a positive constant K2 independent of n, such that for all

t ∈ [0, T ]

‖∂xun‖2L2(I) + α

t
∫

0

‖∂2
xun(s)‖2L2(I) ds ≤ K2.

Proof. As −∂2
xej = λjej, we deduce that

n
∑

j=1

cj(t)λjej = −
n

∑

j=1

cj(t)∂
2
xej = −∂2

xun(t),

then, multiplying both sides of (2.4) by cjλj and summing for j = 1, . . . , n, we obtain

1

2

d

dt

a
∫

0

(∂xun)
2dx+ q(t)

a
∫

0

(∂2
xun)

2 dx

= −
a

∫

0

f∂2
xun dx+

a
∫

0

r(t, x)∂xun∂
2
xun dx+ p(t)

a
∫

0

un∂xun∂
2
xun dx.

(2.7)
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Using Cauchy-Schwartz inequality, (2.6) with ε = α/2 leads to

∣

∣

∣

∣

∣

∣

a
∫

0

f∂2
xun dx

∣

∣

∣

∣

∣

∣

≤





a
∫

0

|∂2
xun|2 dx





1/2 



a
∫

0

|f |2 dx





1/2

≤ α

4

a
∫

0

|∂2
xun|2 dx+

1

α

a
∫

0

|f |2 dx.

(2.8)

By (2.2) and inequality (2.6) with ε =
α

2
, it follows that

∣

∣

∣

∣

∣

∣

a
∫

0

r(t, x)∂xun∂
2
xun dx

∣

∣

∣

∣

∣

∣

≤ β2

α

a
∫

0

|∂xun|2 dx+
α

4

a
∫

0

|∂2
xun(s)| dx. (2.9)

Now, we have to estimate the last term of (2.7). An integration by parts gives

a
∫

0

un∂xun∂
2
xun dx =

a
∫

0

un∂x

(

1

2
(∂xun)

2

)

dx

= −1

2

a
∫

0

(∂xun)
3 dx.

Since ∂xun satisfies

a
∫

0

∂xun dx = 0 we deduce that the continuous function ∂xun is zero

at some point y0n ∈ (0, a), and by integrating 2∂xun∂
2
xun between y0n and x, we obtain

|∂xun|2 =

∣

∣

∣

∣

∣

∣

x
∫

y0n

∂x(∂xun)
2 dx

∣

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∣

∣

x
∫

y0n

∂xun∂
2
xun dx

∣

∣

∣

∣

∣

∣

,

the Cauchy-Schwarz inequality gives

‖∂xun‖2L∞(I) ≤ 2‖∂xun‖L2(I)‖∂2
xun‖L2(I).

But

‖∂xun‖3L3(I) ≤ ‖∂xun‖2L2(I)‖∂xun‖L∞(I).

So, (2.2) yields

∣

∣

∣

∣

∣

∣

a
∫

0

p(t)un∂xun∂
2
xun dx

∣

∣

∣

∣

∣

∣

≤





a
∫

0

|∂2
xun|2 dx





1/4 

β4/5

a
∫

0

|∂xun|2 dx





5/4

.
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Finally, thanks to Young’s inequality |AB| ≤ |A|p
p

+
|B|p′

p′
, with 1 < p < ∞ and

p′ =
p

p− 1
, we have

|AB| =

∣

∣

∣

∣

(α1/pA)

(

α1/p′B

α

)∣

∣

∣

∣

≤ α

p
|A|p + α

p′αp′
|B|p′ .

Choosing p = 4 (then p′ =
4

3
) in the previous formula,

A =





a
∫

0

|∂2
xun|2 dx





1/4

,

and

B =



β4/5

a
∫

0

|∂xun|2 dx





5/4

,

the estimate of the last term of (2.7) becomes

∣

∣

∣

∣

∣

∣

a
∫

0

p(t)un∂xun∂
2
xun dx

∣

∣

∣

∣

∣

∣

≤ α

4

a
∫

0

|∂2
xun|2 dx+

3

4

β4/3

α1/3





a
∫

0

|∂xun|2 dx





5/3

. (2.10)

Let us return to inequality (2.7): By integrating between 0 and t, from the estimates

(2.8), (2.9), and (2.10) we obtain

1

2
‖∂xun‖2L2(I) + α

t
∫

0

‖∂2
xun(s)‖2L2(I) ds

≤ 1

2
‖∂xu0n‖2L2(I) +

α

4

t
∫

0

‖∂2
xun(s)‖2L2(I) ds+

1

α

t
∫

0

‖f(s)‖2L2(I) ds

+
β2

α

t
∫

0

‖∂xun(s)‖2L2(I) ds+
α

4

t
∫

0

‖∂2
xun(s)‖2L2(I) ds

+
α

4

t
∫

0

‖∂2
xun(s)‖2L2(I) ds+

3β4/3

4α1/3

t
∫

0

(

‖∂xun(s)‖2L2(I)

)5/3

ds,
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multiplying both sides of the last inequality by 4, we obtain

2‖∂xun‖2L2(I) + α

t
∫

0

‖∂2
xun(s)‖2L2(I) ds

≤ 2‖∂xu0n‖2L2(I) +
4

α

t
∫

0

‖f(s)‖2L2(I) ds

+ C2

t
∫

0

(

‖∂xun(s)‖2L2(I)

)5/3

ds+ C3

t
∫

0

‖∂xun(s)‖2L2(I) ds,

where C2 =
3β4/3

α1/3
and C3 =

4β2

α
.

Observe that f ∈ L2(R)), and ‖∂xu0n‖2L2(I) is bounded (see Remark 2.2). Then, there

exists a constant C4 such that

‖∂xun‖2L2(I) + α

t
∫

0

‖∂2
xun(s)‖2L2(I) ds

≤ C4 + C2

t
∫

0

(

‖∂xun(s)‖2L2(I)

)2/3

‖∂xun(s)‖2L2(I) ds+ C3

t
∫

0

‖∂xun(s)‖2L2(I) ds.

Consequently, the function

ϕ(t) = ‖∂xun‖2L2(I) + α

t
∫

0

‖∂2
xun(s)‖2L2(I) ds

satisfies the inequality

ϕ(t) ≤ C4 +

t
∫

0

(C2‖∂xun(s)‖4/3L2(I) + C3)ϕ(s)ds.

Gronwall’s inequality shows that

ϕ(t) ≤ C4 exp





t
∫

0

(C2‖∂xun(s)‖4/3L2(I) + C3)ds



 .

According to Lemma 2.4 the integral

t
∫

0

‖∂xun‖4/3L2(I)ds is bounded by a constant indepen-

dent of n (and t).
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So, there exists a positive constant K2 such that

‖∂xun‖2L2(I) + α

t
∫

0

‖∂2
xun(s)‖2L2(I) ds ≤ K2.

Lemma 2.6. There exists a positive constant K3 independent of n, such that for all

t ∈ [0, T ]

‖∂tun‖2L2(R) ≤ K3.

Proof. Let

gn = f − p(t)un∂xun + q(t)∂2
xun − r(t, x)∂xun.

To show that ∂tun is bounded in L2(R), we will first show that gn is bounded in L2(R).

According to Lemmas 2.4 and 2.5, the terms r(t, x)∂xun and β(t)∂2
xun are bounded

in L2(R). On the other hand, by the hypothesis f ∈ L2(R). It remains only to show that

p(t)un∂xun ∈ L2(R).

Lemma 2.4 proves that ‖un‖2L∞(0,T ;H1

0
(I))

is bounded. Then, using the injection of

H1
0 (I) in L∞(I), we obtain

∣

∣

∣

∣

∣

∣

T
∫

0

a
∫

0

(p(t)un∂xun)
2 dx dt

∣

∣

∣

∣

∣

∣

≤ β2

T
∫

0



‖un‖2L∞(I)

a
∫

0

|∂xun|2 dx



 dt

≤ β2CI

T
∫

0

‖un‖2H1

0
(I)‖∂xun‖2L2(I) dt

≤ β2CI‖un‖2L∞(0,T ;H1

0
(I))‖∂xun‖2L2(R),

where CI is a constant independent of n. Hence gn is bounded in L2(R). So, ∂tun is also

bounded in L2(R).

Indeed, from (2.4) for j = 1, . . . , n, we have
a

∫

0

∂tunej dx =

a
∫

0

(f − p(t)un∂xun + q(t)∂2
xun − r(t, x)∂xun)ej dx,

=

a
∫

0

gnej dx,

47



2.1. Existence of solutions to a parabolic problem Chapter 2. Burgers equation

multiplying both sides by c′j and summing for j = 1, . . . , n,

‖∂tun‖2L2(I) =

a
∫

0

gn∂tun dx,

we deduce that ‖∂tun‖L2(R) ≤ ‖gn‖L2(R).

2.1.4 Existence and uniqueness

Lemmas 2.4, 2.5 and 2.6 show that the Galerkin approximation un is bounded in L∞(0, T, L2(I)),

and in L2(0, T,H2(I)), and ∂tun is bounded in L2(R). So, it is possible to extract a sub-

sequence from un (that we continue to denote un) such that

un → u weakly in L2(0, T,H1
0 (I)), (2.11)

un → u strongly in L2(0, T, L2(I)) and a.e. in R, (2.12)

∂tun → ∂tu weakly in L2(R). (2.13)

Lemma 2.7. Under the assumptions of Theorem 2.1 , Problem (2.1) admits a weak

solution u ∈ H1,2(R).

Proof. Note that (2.13) implies

T
∫

0

a
∫

0

∂tunw dx dt →
T
∫

0

a
∫

0

∂tuw dx dt, ∀w ∈ L2(R).

From (2.11) and (2.12),

un∂xun → u∂xu weakly in L2(R) ,

then
T
∫

0

a
∫

0

p(t)un∂xunw dx dt →
T
∫

0

a
∫

0

p(t)u∂xuw dx dt, ∀w ∈ L2(R),

and
T
∫

0

a
∫

0

r(t, x)∂xunw dx dt →
T
∫

0

a
∫

0

r(t, x)∂xuw dx dt, ∀w ∈ L2(R).
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Our goal is to use these properties to pass to the limit. In Problem (2.4), when

n → +∞, for each fixed j, we have

a
∫

0

(∂tu+ p(t)u∂xu) ej dx+ q(t)

a
∫

0

∂xu∂xej dx+

a
∫

0

r(t, x)∂xuej dx

=

a
∫

0

fej dx,

(2.14)

Since (ej)j∈N is a basis of H1
0 (I), for all w ∈ H1

0 (I), we can write

w(t) =
∞
∑

k=1

bk(t)ek,

that is to say wN(t) =
∑N

k=1 bk(t)ek → w(t) in H1
0 (I) when N → +∞.

Multiplying (2.14) by bk and summing for k = 1, . . . , N , then

a
∫

0

(∂tu+ p(t)u∂xu)wN dx+ q(t)

a
∫

0

∂xu∂xwN dx+

a
∫

0

r(t, x)∂xuwN dx

=

a
∫

0

fwN dx.

Letting N → +∞, we deduce that

a
∫

0

(∂tu+ p(t)u∂xu)w dx+ q(t)

a
∫

0

∂xu∂xw dx+

a
∫

0

r(t, x)∂xuw dx =

a
∫

0

fw dx,

so, u satisfies the weak formulation (2.3) for all w ∈ H1
0 (I) and t ∈ [0;T ].

Finally, we recall that, by hypothesis, limn→+∞ un(0) := u0. This completes the proof

of the “existence” part of Theorem 2.1 .

Lemma 2.8. Under the assumptions of Theorem 2.1 , the solution of Problem (2.1) is

unique.

Proof. Let us observe that any solution u ∈ H1,2(R) of Problem (2.1) is in L∞(0, T, L2(I)).

Indeed, it is not difficult to see that such a solution satisfies

1

2

d

dt

a
∫

0

u2 dx+ q(t)

a
∫

0

(∂xu)
2 dx− 1

2

a
∫

0

∂xγ(t, x)u
2 dx =

a
∫

0

fu dx,
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because

p(t)

a
∫

0

u2∂xu dx =
p(t)

3

a
∫

0

∂x(u)
3 dx = 0,

and
a

∫

0

r(t, x)∂xuu dx =

a
∫

0

r(t, x)∂x(
u2

2
) dx = −1

2

a
∫

0

∂xr(t, x)u
2 dx.

Consequently (see the proof of Lemma 2.4)

‖u‖2L2(I) + α

t
∫

0

‖∂xu(s)‖2L2(I) ds

≤ ‖u0‖2L2(I) +
a2

2α

t
∫

0

‖f(s)‖2L2(I) ds+ β

t
∫

0

‖u(s)‖2L2(I) ds,

so,

‖u‖2L2(I) + α

t
∫

0

‖∂xu(s)‖2L2(I) ds

≤ ‖u0‖2L2(I) +
a2

2α

t
∫

0

‖f(s)‖2L2(I) ds

+ β

t
∫

0



‖u(s)‖2L2(I) + α

s
∫

0

‖∂xu(τ)‖2L2(I) dτ



 ds.

Then there exist a positive constant C such that

‖u‖2L2(I) + α

t
∫

0

‖∂xu(s)‖2L2(I) ds

≤ C + β

t
∫

0



‖u(s)‖2L2(I) + α

s
∫

0

‖∂xu(τ)‖2L2(I) dτ



 ds.

Hence, Gronwall’s lemma gives

‖u‖2L2(I) + α

t
∫

0

‖∂xu(s)‖2L2(I) ds ≤ K,

where K = C exp(βT ). This shows that u ∈ L∞(0, T, L2(I)) for all f ∈ L2(I).
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Now, let u1, u2 ∈ H1,2(R) be two solutions of (2.1). We put u = u1 − u2. It is clear

that u ∈ L∞(0, T, L2(I)). The equations satisfied by u1 and u2 lead to

a
∫

0

[∂tuw + α(t)uw∂xu1 + p(t)u2w∂xu+ q(t)∂xu∂xw + r(t, x)w∂xu] dx = 0.

Taking, for t ∈ [0, T ], w = u as a test function, we deduce that

1

2

d

dt
‖u‖2L2(I) + β(t)‖∂xu‖2L2(I)

= −
a

∫

0

r(t, x)u∂xu dx− p(t)

a
∫

0

u2∂xu1 dx− p(t)

a
∫

0

u2u∂xu dx.
(2.15)

An integration by parts gives

p(t)

a
∫

0

u2∂xu1 dx = −2p(t)

a
∫

0

u∂xuu1 dx,

then (2.15) becomes

1

2

d

dt
‖u‖2L2(I) + q(t)‖∂xu‖2L2(I) =

1

2

a
∫

0

∂xr(t, x)u
2 dx+

a
∫

0

p(t)(2u1 − u2)u∂xu dx.

By (2.2) and inequality (2.6) with ε = 2α, it follows that

|
a

∫

0

p(t)(2u1 − u2)u∂xu dx|

≤ β2

4α
(2‖u1‖L∞(I) + ‖u2‖L∞(I))

2‖u‖2L2(I) + α‖∂xu‖2L2(I).

Then, using the injection of H1
0 (I) in L∞(I), we obtain

|
a

∫

0

p(t)(2u1 − u2)u∂xu dx|

≤ β2

4α
(2‖u1‖L∞(0,T,H1

0
(I)) + ‖u2‖L∞(0,T,H1

0
(I)))

2‖u‖2L2(I) + α‖∂xu‖2L2(I).

Furthermore,

1

2

a
∫

0

∂xγ(t, x)u
2 dx ≤ β

2
‖u‖2L2(I).
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So,

1

2

d

dt
‖u‖2L2(I) + α‖∂xu‖2L2(I)

≤ β2

4α
(2‖u1‖L∞(0,T,H1

0
(I)) + ‖u2‖L∞(0,T,H1

0
(I)))

2‖u‖2L2(I)

+ α‖∂xu‖2L2(I) +
β

2
‖u‖2L2(I).

We deduce that there exists a positive constant D, such that

1

2

d

dt
‖u‖2L2(I) ≤ D‖u‖2L2(I),

and Gronwall’s lemma leads to u = 0. This completes the proof.

2.2 Burgers equation in a domain that can be trans-

formed into a rectangle

Let Ω ⊂ R
2 be the domain

Ω = {(t, x) ∈ R
2 : 0 < t < T, x ∈ It},

It = {x ∈ R : ϕ1(t) < x < ϕ2(t), t ∈ (0, T )}.

In this section, we assume that ϕ1(0) 6= ϕ2(0). In other words

ϕ1(t) < ϕ2(t) for all t ∈ [0, T ]. (2.16)

and we consider the Burgers problem



















∂tu(t, x) + c(t)u(t, x)∂xu(t, x)− ∂2
xu(t, x) = f(t, x) (t, x) ∈ Ω,

u(0, x) = 0 x ∈ I0 = (ϕ1(0), ϕ2(0)),

u(t, ϕ1(t)) = u(t, ϕ2(t)) = 0 t ∈ (0, T ),

(2.17)

in Ω ⊂ R
2, such that

c1 ≤ c(t) ≤ c2, for all t ∈ [0, T ], (2.18)
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Figure 2.1: Domain that can be transformed into rectangle

where c1 and c2 are positive constants and ϕ1, ϕ2 are functions defined on [0, T ] belonging

to C1(]0, T [).

Using the results obtained in the first part of this chapter, we look for conditions

on the functions (ϕi)i=1,2 which guarantee that Problem (2.17) admits a unique solution

u ∈ H1,2(Ω).

In order to solve Problem (2.17), we will follow the method which was used, for

example, in Sadallah[42] and Clark et al. [14]. This method consists in proving that this

problem admits a unique solution when Ω is transformed into a rectangle, using a change

of variables preserving the anisotropic Sobolev space H1,2(Ω).

To establish the existence and uniqueness of the solution to (2.17), we impose the

assumption

|ϕ′(t)| ≤ c for all t ∈ [0, T ] (2.19)

where c is a positive constant, and ϕ(t) = ϕ2(t)− ϕ1(t) for all t ∈ [0, T ].

The result related to the existence of the solution u of (2.17) in a rectangle is obtained

53



2.1. Existence of solutions in a non rectangular domain Chapter 2. Burgers equation

thanks to a personal (and detailed) communication of professor Luc Tartar about the

Burgers equation with constant coefficients in a rectangle. The authors would like to

thank him for his appreciate comments and hints.

Theorem 2.9. If f ∈ L2(Ω) and c(t), (ϕi)i=1,2 satisfy the assumptions (2.18), (2.16) and

(2.19), then Problem (2.17) admits a unique solution u ∈ H1,2(Ω).

The proof of Theorem 2.9 needs an appropriate change of variables which allows us to

use Theorem 2.1 .

Proof. The change of variables: Ω → R

(t, x) 7→ (t, y) =

(

t,
x− ϕ1(t)

ϕ2(t)− ϕ1(t)

)

transforms Ω into the rectangle R = (0, T )× (0, 1). Putting u(t, x) = v(t, y) and f(t, x) =

g(t, y), Problem (2.17) becomes































∂tv(t, y) + p(t)v(t, y)∂yv(t, y)− q(t)∂2
yv(t, y) + r(t, y)∂yv(t, y)

= g(t, y) (t, y) ∈ R,

v(0, y) = 0 y ∈ (0, 1),

v(t, 0) = v(t, 1) = 0 t ∈ (0, T ),

(2.20)

where

ϕ(t) = ϕ2(t)− ϕ1(t), p(t) =
c(t)

ϕ(t)
,

q(t) =
1

ϕ2(t)
, r(t, y) = −yϕ′(t) + ϕ′

1(t)

ϕ(t)
.

This change of variables preserves the spaces H1,2 and L2. In other words

f ∈ L2(Ω) ⇔ g ∈ L2(R),

u ∈ H1,2(Ω) ⇔ v ∈ H1,2(R).
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According to (2.18) and (2.19), the functions p, q and r satisfy the following conditions

α < p(t) < β, ∀t ∈ [0, T ],

α < q(t) < β, ∀t ∈ [0, T ],

|∂yr(t, y)| ≤ β, ∀(t, y) ∈ R,

where α and β are positive constants.

So, Problem (2.17) is equivalent to Problem (2.20), and by Theorem 2.1 Problem

(2.20) admits a solution v ∈ H1,2(R). Then, Problem (2.17) in the domain Ω admits a

solution u ∈ H1,2(Ω).
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