Chapter 2

Existence of solutions to Burgers
equation in domain that can be

transformed into rectangle

In this chapter, we consider a non homogeneous Burgers problem with time variable
coefficients subject to Cauchy-Dirichlet boundary conditions in a non rectangular domain.
This domain will be transformed into a rectangle by a regular change of variables. The
right-hand side of the equation is taken in L?, and the initial condition is in the Sobolev
space Hj. The goal is to establish the existence, the uniqueness and the regularity of the

solution.
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2.1 Existence of solutions to a parabolic problem
with variable coeflicients in a rectangle

In this section, we consider the semilinear parabolic problem

ou(t, x) + p(t)u(t, ©)0,u(t, ©) — q(t)0?u(t, x)+
r(t,x)0u(t, x) = f(t,z) (t.x) € R,

u(0,2) = ug(x) =€l

| ult,a) =u(t,0)=0 te(0,T),

(2.1)

in the rectangle R = (0,7T) x I where I = (0,a), a € R™ (T is a positive finite number);
f € L*(R) and ug € H}(I) are given functions.
We assume that the functions p, ¢ depend only on ¢ and the function r depends on ¢

and x. We also suppose that there exist two positive constants a and [, such that

a<p(t)<p, a<qt)<p, Ve[0T -

and  |0ur(t, )| < B ou |rta)|<B  V(tx) € R 22
In a paper by Morandi Cecchi et al. [37], the main result was the existence and uniqueness
of a solution to the Burgers problem (with constant coefficients) in the anistropic Sobolev

space

H"“*(R) ={u € L*(R) : u € L*(R), d,u € L*(R), Oiu € L*(R)}

where R is arectangle. The authors used a wrong inequality (namely [ M (u—M)*(t) dz <
M||(uw — M)*(t)||?) at the end of the proof of Theorem 2 (maximu?n principle); the in-
equality appears in the line 14, page 165 (and line 15 page 167). To rectify this part of the
proof it suffices to show that u € L*(Q). The proof given by the authors remains true
only when f = 0 (but this was not the objective of their paper), this case being treated
by Bressan in [9]. However, in our work, using another method, we prove a more general
result concerning the existence, uniqueness and regularity of a solution to the Burgers
problem with variable coefficients in a rectangle. Then, the existence, uniqueness and

regularity of a solution to the Burgers problem in a domain that can be transformed into

a rectangle.
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The main result of This section is as follows:

Theorem 2.1. Ifug € Hi(I), f € L*(R) and p,q, v satisfy the assumption (2.2)), then
Problem (2.1) admits a unique solution u € HY*(R).

2.1.1 Resolution of the parabolic problem (2.1))

The proof of Theorem is based on the Faedo-Galerkin method. We introduce approx-
imate solution by reduction to the finite dimension. By the Faedo-Galerkin method, we
obtain the existence of an approximate solution using an existence theorem of solutions
for a system of ordinary differential equations. We approximate the equation of Problem
by a simple equation. Then we make the passage to the limit using a compactness
argument.

Multiplying the equation of Problem by a test function w € H}(I), and integrat-

ing by parts from 0 to a, we obtain

a a

/@uwda:%—q(t)/@mu@zwdx—i—p(t)/uaxuwdx—l—/r(t,:c)&puw dz
0 0 o 0 (2.3)
:/fwdx, Yw € Hy(I), t€(0,7).
0

This is the weak formulation of Problem (2.1). The solution of (2.3)) satisfying the
conditions of Problem (2.1)) is called weak solution.
To prove the existence of a weak solution to (2.1]), we choose the basis (e;);en+ of L*(I)

defined as a subset of the eigenfunctions of —9? for the Dirichlet problem

—8§€j = )‘jejv ] c N*,

e;=0 onl ={0,a}.

More precisely,

ej(r) = —=sin>=——, \; = ()% forj € N*

38



2.1. Existence of solutions to a parabolic problem Chapter 2. Burgers equation

As the family (e;);en+ is an orthonormal basis of L*(I), then it is an orthogonal basis of

H}(I). In particular, for v € L?(R), we can write

v = Z bk(t)ek,
k=1

where by = (v, ex)2(r) and the series converges in L?(I). Then, we introduce the approx-

imate solution w,, by

U (t) = ch(t)ej,

un(0) = gy = Y _ ¢;(0)e;,

j=1
which has to satisfy the approximate problem

( a

/ (O, + p(t)unOzuy) e dz + q(t) /8xun8xej dx
0

0
a

+/T(t,x)8$unej de = /fej dz,
0

0

(2.4)

U, (0) = ugp.

\

forall j=1,...,n,and 0 <t <T.
Remark 2.2. The coefficients ¢;(0) (which depend on j and n) will be chosen such that

the sequence (ug,,) converges in Hy () to ug.

2.1.2 Solution of the approximate problem

Lemma 2.3. For all j, there exists a unique solution u, of Problem (2.4]).

Proof. As ey,--- e, are orthonormal in L?*(I), then

/&unej de = Zc;(t)/eiej dz
0
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On the other hand,
—@%Gi = Ai€i,
then

Ooun(t) = = ci(t)hies.
=1

Therefore, for all ¢t € [0, 7]

—q(t)/@iunej dr = q(t)zn:ci(t))\i/eiej dz
0

= q(t)Ajci(l).

Now, if we introduce

f](t) = /f@j da;,
0

ki(t) = —p(t)/unﬁxunej duz,
0

and
a

h;(t) = —/r(t,x)@xunej dz,
0

for j € {1,...,n}, then (2.4) is equivalent to the following system of n uncoupled linear

ordinary differential equations:

The terms k;(t), h;(t) are well defined (because e; and r(t,z) are regular) and f; is in-
tegrable (because f € L?(R)). Taking into account the initial condition ¢;(0), for each
fixed j € {1,...,n}, has a unique regular solution ¢; in some interval (0,7") with
T' < T. In fact, we can prove here that 7" =T O
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2.1.3 A priori estimate

Lemma 2.4. There exists a positive constant K independent of n, such that for all

t€[0,7]

t
Mwém+a/wmwﬁﬁmﬂs§KL
0

Proof. Multiplying (2.4) by ¢; and summing for j = 1,...,n, we obtain

1 d a 1 a a
5%/ui dx+q(t)/(8mun)2dx— 5/8zr(t,x)ui der = /fundx
0 0 0

0

Indeed, because of the boundary conditions, we have

a a

p(t) /ui@mun dor = ]? /ch(un)3 dr =0,
0

0

and an integration by parts gives

1 a a
—5/8$r(t,x)ui dx = /T(t,x)unaxun dx.
0 0

Then, by integrating with respect to ¢ (¢ € (0,7T)), and according to (2.2)), we find that
. t
Sl +a [ 10, (6) g ds
0

<

N | —

¢ t
B
[uonl|Z2r) + / 1 ()2 llun (2 ds + 5 [ llun($) 720 ds.
0 0

By the elementary inequality

2
Irs| < Sl

R 2.
<3 5o Vr,s € R, Ve > 0, (2.6)
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2a
with € = —, we obtain
a

t
1
—HunH%m) +a Hazun(S)H%m) ds
2

0

N | —

t
a2
< Sluonllzary + 7= [ £ ()72 ds
4o
0

t t
a B
5 [l as + 5 [ (o) By ds
0 0

using Poincaré’s inequality
2

a
lnlZeqry < S 100t Z2ay,

then
« o

and we obtain,

t
wm;m+ajwawwmanw
0

t t
0/2
< lonlBacy + 5 [ 1706 ds + 3 [ ) s,
0 0

and

t
o + 0 [ 10n(5) [y ds
0
CL2 /
< lon o+ 7 | I d
0

t s
48 [ (Il +a [ 10l dr | as.
0 0

As the sequence (ug,) converges in Hj(I) to ug (see Remark and f € L*(R), there
exists a positive constant C) independent of n such that

2
a
[wonll 22y + %Hf”%m%) <G
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and

t
ltn 2oy + 0 / 1Bsttn ()23 ds
0

t s
<o [ | T+ [ Norua(r) By dr | s
0 0

then by Gronwall’s inequality (see Corollary 1.33),

t
lnlZacr) + 0 / 10s10n(5) 227, ds < C exp(Bt).
0

Taking K, = Cy exp(ST), we obtain

t
HunH%Q(I) + O[/ ||aacvn<5)“%2(1) ds < K;.
0

]

Lemma 2.5. There exists a positive constant Ky independent of n, such that for all

t€[0,7]

t
ol + o [ 102un(s) [y ds < K
0

Proof. As —9%e; = \jej, we deduce that

n n

Z ci(Aje; ==Y ¢;(1)03e; = —un (1),

j=1 j=1
then, multiplying both sides of (2.4) by ¢;A; and summing for j = 1,...,n, we obtain
14 a(a wn)2dz + g(t) a(a% 12 da
2dt e v
0 0 . (2.7)

= —/f@iun dx + /T(i,x)@xunﬁiun dz + p(t) /unaxunﬁgun dx.
0 0

0
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Using Cauchy-Schwartz inequality, (2.6) with ¢ = «/2 leads to

a u 12 ;. 1/2
/fé?gundx < /lﬁiun\de /|f]2dx
0 o 0 (2.8)
1
< g/|8§un|2dx+ —/|f|2dx.
4 !
0 0
By (2.2) and inequality (2.6 with ¢ = %, it follows that
r 2 B / 2 @ / 2
r(t, ©)0pu,0iu, dz| < — [ |0pu,|” dz + 1 |02, ()] da. (2.9)
«
0 0 0

Now, we have to estimate the last term of (2.7). An integration by parts gives

a

/unﬁxunﬁgun dz = /unaz (%(890%)2) dz
0

0
a

— —%/(&cun)?’ dz.

0

a

Since 0,u,, satisfies / 0,1, dr = 0 we deduce that the continuous function d,u,, is zero

0
at some point o, € (0,a), and by integrating 20,u,,0*u,, between yo, and z, we obtain
0y, |* = /@(&Cun)Q dz| =2 /@Cun@gun dz|,
On On

the Cauchy-Schwarz inequality gives
Haﬂcun”%w(l) < 2||3wun||L2(I)HagunHLQ(I)'
But

105wl sy < N0attnl[Z2 1) |10t | o1y

So, (2.2) yields

/p(t)unﬁxunﬁiun dz| < /]éﬁuanw 54/5/]895%]2 dz

0 0 0

1/4 a 5/4
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AlP B|¥
Finally, thanks to Young’s inequality |AB| < ’p‘ + B ’

, with 1 < p < oo and

P = P 7o we have

AB| =

(/P A) (&1/17’5) ‘

(07

o
<

4
Choosing p = 4 (then p’ = g) in the previous formula,

a 1/4
/ PuPdz|
0

5/4

and
a

B = 4/5/|8 u, > dz :

0
the estimate of the last term of (2.7)) becomes

u 5/3

Dundsundugde| < & [ 2un e+ 207 ([ 10,0, 2.10
p(t)undpundyuy, dr| < 1 |0z ual x—|—4 1/3 |Ozun|” da : (2.10)
0 0

0

Let us return to inequality (2.7): By integrating between 0 and ¢, from the estimates

£3). (29). and (ZI0) we obtain

1
ol + [ 102 (s) iy ds
0
1 / 1 /
Oé
< ool + 5 [ 102Ny ds + 5 [ 17 ds
0 0

/62 t t
(6]
s / J0ctn(3) sy ds + / 1021,y s

543 5/3
/ Ry s+ 220 [ (1000 0

0
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multiplying both sides of the last inequality by 4, we obtain

200, + @ [ 1020 (5) g ds
0

t
4
< 200l + 5 [ I an ds
0

t

2 5/3 t 2
+Co [ (o)) st Ca [ (o) s
0

0

4/3 432
where Cy = 35 and Cy = 5

Observe that f € L?(R)), and [|Ozuon|72 ;) is bounded (see Remark . Then, there

exists a constant C4 such that

|@wﬂgm+a/m%%@m;m@

t

2/3
<Cot G [ (10 Ean) 10sn(s) s ds + Co [ [000(5) sy s

0

Consequently, the function

mwzwmmmm+ajwﬁwwwanw
0

satisfies the inequality

t

¢@§@+/WMMAWM-HM(M&

0

Gronwall’s inequality shows that

t

WHKMWLﬂ@M%UW3+%)

0

According to Lemma [2.4] the integral / ||8xun||i/2?z pds is bounded by a constant indepen-
dent of n (and t).
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So, there exists a positive constant K5 such that
o+ [ 12un(s) [y ds < K

]

Lemma 2.6. There exists a positive constant K3 independent of n, such that for all
te[0,7]
|10t |72y < K.

Proof. Let
= f — p(O)unOptiy, + q(t)02uy, — r(t, )Optty,.
To show that yu,, is bounded in L*(R), we will first show that g, is bounded in L?(R).
According to Lemmas and 2.5 the terms r(t,2)d,u, and B(t)0%u, are bounded
in L?(R). On the other hand, by the hypothesis f € L*(R). It remains only to show that
p(t)u,0pu,, € L*(R).
Lemma proves that ||u"||%°°(O,T;H(}(I)) is bounded. Then, using the injection of
H}(I) in L*>(I), we obtain

a

T T a
// (D)) dz dt 352/ ||un\|%oo(1)/|8xun]2dx dt
0 0 0

T
< [ Nl 0 sy
0

< 6201||un||%°°(0,T;H3(I)) ||8mun||%2(R)

where C7 is a constant independent of n. Hence g, is bounded in L*(R). So, du,, is also
bounded in L*(R).
Indeed, from ({2.4)) for j =1,...,n, we have

a

/@unej de = /(f — p(O)unOptty + q(t) 2w, — 1(t, 2)0puy )e; dz,
0

0
a

= /gnej dz,

0
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multiplying both sides by ¢; and summing for j =1,...,n,

HatunH%2(]) :/gnatundx7
0

we deduce that ||Oyun||L2(r)y < || gnllz2(r)- O

2.1.4 Existence and uniqueness

Lemmas andshow that the Galerkin approximation u, is bounded in L>(0, T, L*(I)),
and in L*(0,T, H*(I)), and d;u,, is bounded in L?(R). So, it is possible to extract a sub-

sequence from u, (that we continue to denote u,) such that

u, —u weakly in L*(0,T, Hy(I)), (2.11)
u, — u strongly in L*(0,T, L*(I)) and a.e. in R, (2.12)
Opun, — Opu weakly in L*(R). (2.13)

Lemma 2.7. Under the assumptions of Theorem , Problem (2.1) admits a weak
solution u € H"?(R).

Proof. Note that (2.13) implies

a

T a T
//8tunw dedt — //atuwdxdt, Yw € L*(R).
0 0 0 0

From (211) and (212),

UpOptty, — udpu  weakly in L*(R) ,

then

a

T
//p (1)U Oy unwdxdt%// Hud,uw dedt, Yw € L*(R),

and
a

T
//rtxaunwdxdt%// (t,r)0,uwdz dt, Yw € L*(R).
00
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Our goal is to use these properties to pass to the limit. In Problem ({2.4)), when

n — +oo, for each fixed j, we have

a a a

/(&gu + p(t)udyu) e; dz + ¢(t) /&Eu@xej dx + /T(t,x)amuej dx
0 0 0 (2.14)

a

- / fe;dx,

0

Since (e;);en is a basis of H(I), for all w € Hy(I), we can write

= Z bk (t)ek,
k=1

that is to say wy(t) = Son_, br(t)er — w(t) in HY(I) when N — +oo.
Multiplying (2.14) by by and summing for £ = 1,..., N, then

a a

/((%u + p(t)ud,u) wy de + q(t /8 ud,wy dr + /T(t,x)axuw]v dz

0
/wadT

Letting N — 400, we deduce that

a a a

/(&gu —l—p(t)u@xu)wdw—l—q(t)/@xu@xwdac%—/r(t,z)@xuwdx:/fwdx,
0

0 0 0

so, u satisfies the weak formulation (2.3) for all w € H}(I) and t € [0; T).
Finally, we recall that, by hypothesis, lim,,_, o 1,(0) := ug. This completes the proof
of the “existence” part of Theorem . O

Lemma 2.8. Under the assumptions of Theorem , the solution of Problem (2.1]) is

unique.

Proof. Let us observe that any solution u € H?(R) of Problem (2.1]) is in L>(0, T, L*(I)).

Indeed, it is not difficult to see that such a solution satisfies

;c;lt w?dx + q(t )/(&Eu)2 dr — %/Gx’y(t,x)u2 dor = /fudx,

0 0 0 0
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because . .
p(t) /u28mu dor = Z? /(‘L(u)g’ dz =0,
0 0
and . . .
u? 1 9
/r(t,x)&ruudx = /T(t,x)ax(g) dz = —5/8xr(t,x)u dz.
0 0 0

Consequently (see the proof of Lemma
t
JulFzey + [ 1) ds
0

t t
&2
< Nl + 7 [ WFONBagyds + 5 [ u(s) gy s,
0 0

SO,

t
JulB + @ [ 105(5) sy ds
0
9 t
2 a 2
< ol + e [ 1FNEacn ds
0

t s
5 [ {1 +a [ 10 dr | ds
0 0

Then there exist a positive constant C' such that

t
Julaqp) + 0 / 100tu()| |2 ds
0

t S
<C48 [ (Il +a [ 10 dr | ds
0 0
Hence, Gronwall’s lemma gives
t
JulFsy + o [ 10su(s) gy ds < .
0

where K = Cexp(ST). This shows that v € L>(0,T, L*(I)) for all f € L*(I).
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Now, let uy,us € H*(R) be two solutions of (2.1). We put u = u; — uy. It is clear
that u € L*>°(0,T, L*(I)). The equations satisfied by u; and uy lead to

a

/[&tuw + a(t)uwd,uy + p(t)uswdu + q(t)O,ud,w + r(t, x)wdyu] de = 0.
0

Taking, for t € [0,7], w = u as a test function, we deduce that

1d
el + BOIO g

r i ‘ (2.15)
= — /T(t,x)uﬁxu dz — p(t) /u20xu1 dz — p(t) /uQu&cu da.

0 0 0

An integration by parts gives

p(t)/uQ&Bul dz = —2p(t)/u8$uu1 dz,
0 0
then (2.15) becomes
1d , 1/ , /
thHUHB 0+ a@O|0sullz2y = 5 Opr(t,x)u”dz + [ p(t)(2ur — up)ud,ude.
0 0

By (2.2) and inequality (2.6 with ¢ = 2« it follows that
]/ )(2uy — ug)udu dzx|

B
< 1o Cllullz= + luzl = D2 [ullZ oy + ellOsull72

Then, using the injection of Hj(I) in L>°(I), we obtain
]/ )(2uy — ug)udu dzx|

< @(2||u1||L°°(O,T,Hé(1)) + ||u2||Lo<>(0,T,H5(I) )? ||u||L2 + |0, UHL2

Furthermore,
a

g
[ ottt < Jlula,

0

DO | —

51



2.1. Existence of solutions in a non rectangular domain Chapter 2. Burgers equation

So,

1d
5@”“”%2(1) + OZHaxUH%m)
2

< E(zuulHLw(O,T,Hé(I)) + ”uQHLOO(O,T,H(%(I)))2HUH%Q(I)

B
"‘OéHamUH%m)‘i‘5”“”%2(1)‘

We deduce that there exists a positive constant D, such that

1d

5%”“”%2(1) < D||U”%2(I)a

and Gronwall’s lemma leads to w = 0. This completes the proof. O]

2.2 Burgers equation in a domain that can be trans-
formed into a rectangle
Let © C R? be the domain

Q={(t,2) eR*:0<t<T, z €L},

L= {r €R:pi(t) <o < alt), t€ (0,T)).
In this section, we assume that 1(0) # 2(0). In other words
01(t) < pa(t) forall t €[0,T]. (2.16)

and we consider the Burgers problem

Opu(t, ) + c(t)u(t, 2)0 u(t, z) — Qu(t,x) = f(t,x) (t,z) € Q,
w(0,2) =0 z € Iy = (¥1(0), p2(0)), (2.17)
u(t,p1(t)) = u(t, p2(t)) =0 t € (0,7),
in 0 C R?, such that
c1 <clt) <o, foralltel0,T] (2.18)
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b,

Figure 2.1: Domain that can be transformed into rectangle

where ¢; and ¢y are positive constants and ¢y, @9 are functions defined on [0, 7] belonging
to C1(]0,T7).

Using the results obtained in the first part of this chapter, we look for conditions
on the functions (¢;);=12 which guarantee that Problem admits a unique solution
u e HY(Q).

In order to solve Problem , we will follow the method which was used, for
example, in Sadallah[42] and Clark et al. [14]. This method consists in proving that this
problem admits a unique solution when 2 is transformed into a rectangle, using a change
of variables preserving the anisotropic Sobolev space H'2(().

To establish the existence and uniqueness of the solution to , we impose the
assumption

o' (t)| <c foralltel0,T] (2.19)

where ¢ is a positive constant, and ¢(t) = @o(t) — p1(t) for all t € [0, T].
The result related to the existence of the solution u of (2.17)) in a rectangle is obtained
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thanks to a personal (and detailed) communication of professor Luc Tartar about the
Burgers equation with constant coefficients in a rectangle. The authors would like to

thank him for his appreciate comments and hints.

Theorem 2.9. If f € L*(Q) and c(t), (pi)i=1.2 satisfy the assumptions (2.18), (2.16) and
[2.19), then Problem (2.17) admits a unique solution u € H?(Q).

The proof of Theorem needs an appropriate change of variables which allows us to
use Theorem 2.1] .

Proof. The change of variables: 2 — R
z —pi(t) )
t ) = (ty) = (t,—
A PN O EEN0
transforms €2 into the rectangle R = (0,7) x (0, 1). Putting u(t,z) = v(t,y) and f(t,x) =
g(t,y), Problem (2.17)) becomes

( dv(t,y) +p(t)v(t, y)oyu(t,y) — q(t)d5u(t, y) + r(t, y)dyv(t, )
= g(t, y) (ta y) € R, (2'20)
v(0,y) =0 ye(0,1),

v(t,0) =v(t,1)=0 te€(0,7T),

\

where
o) = ) = e), ot = S
_ Ly o () ()
1=y T A

This change of variables preserves the spaces H'? and L2. In other words

fel*(Q) & ge L*(R),

ue€ HY?(Q) < ve H2(R).
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According to (2.18) and (2.19)), the functions p, ¢ and r satisfy the following conditions

a<p(t)<p, Vtelo,T],
a<q(t)<p, Vtelo,T],

Oyr(t,y)l < B, V(ty) € R,

where o and [ are positive constants.

So, Problem (2.17) is equivalent to Problem (2.20)), and by Theorem Problem
([2.20) admits a solution v € H"?(R). Then, Problem (2.17) in the domain Q admits a
solution u € H*(Q). O
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