
Chapter 1

Preliminaries and explicit solutions

for non-homogeneous Burgers

equations

This chapter consists of two parts, the objective of the first one is to recall the essential

notions and the classical results that will be used throughout this work. In the second

part, exact solutions for non-homogeneous Burgers equations with some choices of the

second member are introduced, and the generalized Hopf-Cole transformation is used to

transform the nonlinear Burgers equation into a linear heat equation.
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1.1 Function Spaces

Functional analysis tools are the essential ingredients for the study of partial differential

equations, especially Lebesgue and Sobolev spaces. The function spaces with vector values

are adapted to the study of evolution problems. In this section, we will recall some

fundamental results for the study of partial differential equations. For more details and

proofs we refer to Adams [1], Brezis [10], Chipot [13] and Evans [20].

Lp spaces

Let Ω be an open subset of Rn. D(Ω) is the space of functions of class C∞ with compact

support. Let p ∈ R with 1 ≤ p <∞, f ∈ Lp(Ω) if f : Ω←→ R is measurable and |f |p is

integrable. These spaces are equipped with the norm

‖f‖Lp(Ω) =





∫

Ω

|f(x)|p dx





1
p

.

f ∈ L∞(Ω) if f is measurable and there exists C ≥ 0 such that |f(x)| ≤ C a.e on Ω. The

space L∞(Ω) is equipped with the norm

‖f‖L∞(Ω) = inf{C such as |f(x)| ≤ C a.e x in Ω}

Notation. Let 1 ≤ p <∞; we denote by q the conjugate exponent of p,

1

p
+

1

q
= 1.

Theorem 1.1. (Hölder’s inequality). Assume that f ∈ Lp(Ω) and g ∈ Lq(Ω) with 1 ≤

p ≤ ∞. Then fg ∈ L1(Ω) and

‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω).

In the particular case where p = q = 2, we get Cauchy-Schwarz inequality:

‖fg‖L1(Ω) ≤ ‖f‖L2(Ω)‖g‖L2(Ω).

Theorem 1.2. Lp(Ω) is a Banach space for any p, 1 ≤ p ≤ ∞ and it is a Hilbert space

if p = 2.

Theorem 1.3. D(Ω) is dense in Lp(Ω).
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Reflexivity. Separability. Dual of Lp.

The following table summarizes the main properties of the space Lp(Ω) when Ω is a

measurable subset of Rn:

Reflexive Separable Dual space

Lp(Ω) with 1 < p <∞ yes yes Lq(Ω) with
1

p
+

1

q
= 1

L1(Ω) no yes L∞(Ω)

L∞(Ω) no no L1(Ω) $ (L∞(Ω))′

Proposition 1.4. Let (un) be a bounded sequence in Lp(Ω) with 1 < p < ∞ and q such

as
1

p
+

1

q
= 1, then we can extract from (un) a subsequence weakly convergent, i.e

∃(unk
), ∃u ∈ Lp(Ω), ∀ϕ ∈ Lq(Ω), lim

k→+∞

∫

Ω

unk
ϕ dx =

∫

Ω

uϕ dx.

Proposition 1.5. Let (un) be a bounded sequence in L∞(Ω), then we can extract from

(un) a subsequence weakly-star convergent, i.e

∃(unk
), ∃u ∈ L∞(Ω), ∀ϕ ∈ L1(Ω), lim

k→+∞

∫

Ω

unk
ϕ dx =

∫

Ω

uϕ dx.

Sobolev spaces

Assume that Ω is an open domain in Rn. For m ∈ N and 1 ≤ p ≤ ∞. The Sobolev space

Wm,p(Ω) is defined by:

Wm,p(Ω) = {f ∈ Lp(Ω); |α| ≤ m,Dαf ∈ Lp(Ω)},

where for any α = (α1, α2, · · · , αn) ∈ Nn we note |α| = α1 + α2 + · · · + αn and Dαf =

∂α1
x1
∂α2
x2
· · · ∂αn

xn
f = v is the αth− weak derivative of f in the sense

∫

Ω

fDαϕ dx = (−1)|α|
∫

Ω

vϕ dx, ∀ϕ ∈ D(Ω).

The space Wm,p(Ω) is equipped with the norm

‖f‖Wm,p(Ω) =





∑

|α|≤m

‖Dαf‖p
Lp(Ω)





1
p

, if p <∞,
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and for p =∞,

‖f‖Wm,∞(Ω) = sup
|α|≤m

‖Dαf‖L∞(Ω).

Proposition 1.6.

i) Wm,p(Ω) is a Banach space for every 1 ≤ p ≤ ∞.

ii) If p <∞, Wm,p(Ω) is separable.

iii) If 1 < p <∞, Wm,p(Ω) is reflexive.

Proposition 1.7. If u ∈ W
m,p
0 (Ω) and ũ is defined by

ũ =







u on Ω

0 on Ωc

then ũ ∈ Wm,p(Rn).

Notation 1.1. If p = 2, we usually write Wm,2(Ω) = Hm(Ω). The space Hm(Ω) is a

separable Hilbert space. On the other hand D(Ω) =
{

u : Ω→ C, ∃v ∈ D(Rn), u = v|Ω
}

.

Theorem 1.8. If Ω is Lipschitz, the space D(Ω) is dense in H1(Ω), i.e. for any element

u of H1(Ω) there exists a sequence (un) of D(Ω) such that ‖un − u‖H1(Ω) converge to 0.

Proposition 1.9. If Ω is a bounded domain, then the semi-norm | · |1,Ω : u 7→ ‖∇u‖L2,

or simply ‖ · ‖H1
0 (Ω), is a norm on H1

0 (Ω) which is equivalent to the norm induced by that

of H1(Ω). The space H1
0 (Ω) is a Hilbert space for the inner product defined by:

(u, v) 7→ (u, v)H1
0 (Ω) = (∇u,∇v)[L2(Ω)]n .

Theorem 1.10. (compactness of Rellich-Kondrachov). Suppose that Ω is a bounded reg-

ular domain, then the embedding of H1(Ω) in L2(Ω) is compact. Consequently, all weakly

convergent sequences in H1(Ω) converge strongly in L2(Ω).

Theorem 1.11. (Poincaré’s inequality). If Ω is a bounded domain of Rn, then there

exists a constant C(Ω) such that

‖u‖L2(Ω) ≤ C(Ω)‖u‖H1
0 (Ω) ∀u ∈ H1

0 (Ω).
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Theorem 1.12. (of Lax-Milgram). Let H be a Hilbert space and a(·, ·) is a bilinear,

continuous and coercive form on H × H. Then, for any ϕ ∈ H ′, there exists a unique

u ∈ H such that

a(u, v) = 〈ϕ, v〉H′,H , ∀v ∈ H.

Moreover, if a : H ×H → R is symmetric, then u is characterized by the property:

u ∈ H and
1

2
a(u, u)− 〈ϕ, u〉H′,H = min

v∈H

{

1

2
a(v, v)− 〈ϕ, v〉H′,H

}

.

1.1.1 Functional analysis for parabolic problems

Let X be a Banach space, with the norm ‖ · ‖X .

Definition 1.13. We denoted by D′(0, T ;X) the space of distributions on ]0, T [ with

values in X, i.e. for f ∈ D′(0, T ;X):

i) φ ∈ D(]0, T [;X) 7→ 〈f, φ〉 is linear.

ii) for all φn of D(]0, T [;X) such that φn → φ in D(]0, T [;X), then 〈f, φn〉 → 〈f, φ〉 in

X.

The convergence of the sequence of D′(0, T ;X) is defined by:

fn → f in D′(0, T ;X) ⇐⇒ ∀φ ∈ D(0, T ;X), 〈fn, φ〉 → 〈f, φ〉.

The derivative
∂f

∂t
of f ∈ D′(0, T ;X), is defined as the unique element of this space which

satisfies

〈
∂f

∂t
, φ〉 = −〈f,

∂φ

∂t
〉, ∀φ ∈ D(]0, T [;X).

Lp(0, T ;X) spaces

Definition 1.14. Let T be a positive number, for p ∈ [1,+∞[, Lp(0, T ;X) denotes the

space of classes of functions f :]0, T [−→ X that are measurable, such that

T
∫

0

‖f(t)‖pX dt <∞,
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It is a Banach space for the norm

‖f‖Lp(0,T ;X) =





T
∫

0

‖f(t)‖pX





1
p

,

and for p = +∞, L∞(0, T ;X) is a Banach space equipped with the norm

‖f‖L∞(0,T ;X) = sup
t∈]0,T [

ess‖f(t)‖X .

Proposition 1.15. If p < ∞, the set C(0, T ;X) of continuous functions of [0, T ] with

values in X is dense in Lp(0, T ;X).

Proposition 1.16. For p ∈ [1,∞[, we have the following results

i) If X is separable, then Lp(0, T ;X) is also separable.

ii) If X is reflexive (respectively of Hilbert), then Lp(0, T ;X) is reflexive (respectively of

Hilbert).

Duality.

Let p and q be two conjugate exponents, and p ∈ [1,∞[.

i) The dual of Lp(0, T ;X) is Lq(0, T ;X ′).

ii) Lp(0, T ;Lp(Ω)) = Lp(]0, T [×Ω).

Remark 1.17. If X and Y are two Banach spaces such that

X →֒ Y (continuous embedding),

then

D′(0, T,X) →֒ D′(0, T, Y )

and

Lp(0, T,X) →֒ Lp(0, T, Y ) 1 ≤ p ≤ ∞.

For two Hilbert spaces V , H such that V →֒ H →֒ V ′, V dense in H, where V ′ is the

dual of V , a suitable choice could be

H1
0 (Ω) →֒ L2(Ω) →֒ H−1(Ω).
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W 1,p(0, T ;X) spaces

Definition 1.18. Let X be a Banach space and T a positive finite number. For 1 ≤ p ≤

∞, we define the space

W 1,p(0, T ;X) =

{

f ∈ Lp(0, T ;X),
∂f

∂t
∈ Lp(0, T ;X)

}

equipped with the following norm

‖f‖W 1,p(0,T ;X) = ‖f‖Lp(0,T ;X) +

∥

∥

∥

∥

∂f

∂t

∥

∥

∥

∥

Lp(0,T ;X)

or the equivalent norm

‖f‖W 1,p(0,T ;X) =

(

‖f‖p
Lp(0,T ;X) +

∥

∥

∥

∥

∂f

∂t

∥

∥

∥

∥

p

Lp(0,T ;X)

) 1
p

.

Proposition 1.19. For 1 ≤ p ≤ ∞, the space W 1,p(0, T ;X) is a Banach space.

Proposition 1.20. If X is separable (resp. reflexive) and p < +∞, then the space

W 1,p(0, T ;X) is separable (resp. reflexive) .

For p = 2, we note H1(0, T ;X) = W 1,2(0, T ;X).

Proposition 1.21. H1(0, T ;X) is a Hilbert space.

H1(Q) space

Definition 1.22. Let Ω be an open of Rn and T a finite number. We note Q the cylinder

defined by Q =]0, T [×Ω. We define the space

H1(Q) =

{

f ∈ L2(Q),
∂f

∂t
∈ L2(Q)

}

equipped with the norm

‖f‖H1(Q) =

(

‖f‖2L2(Q) +

∥

∥

∥

∥

∂f

∂t

∥

∥

∥

∥

2

L2(Q)

) 1
2

.

Theorem 1.23. H1(Q) is a Hilbert space for the norm defined above.
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Theorem 1.24. (of compactness). The embedding of H1(Q) in L2(Q) is compact.

A general compactness result in vector-valued function spaces is given by the famous

Lions-Aubin-Simon theorem

Theorem 1.25. ( Lions-Aubin-Simon) Let B0, B and B1 three Banach spaces with B0 ⊂

B ⊂ B1. We assume that the embedding B0 →֒ B is compact and that B →֒ B1 is

continuous. Let 1 < p < ∞ and 1 < q < ∞. We suppose that B0 and B1 are reflexive

and we define

W = {f ∈ Lp(0, T, B0), f ′ ∈ Lq(0, T, B1)},

W is a reflexive Banach space for the norm

‖f‖W = ‖f‖Lp(0,T,B0) + ‖f
′‖Lq(0,T,B1)

and the embedding W →֒ Lp(0, T, B)) is compact.

1.1.2 Anisotropic Sobolev spaces

In this section we introduce the so-called anisotropic Sobolev spaces Hr,s built on the

Lebesgue space of square integrable functions L2. These function spaces are the natural

ones adopted in the study of parabolic equations and are different from those in the study

of elliptic equations since the space variable x and time variable t play different roles in

parabolic equations. We recall the following definition of anisotropic Sobolev spaces. For

more details we refer to [34]

Let r and s be two positive integers. For Ω an open set in Rn, we define

Hr,s(Q) = L2(0, T,Hr(Ω)) ∩Hs(0, T, L2(Ω)), (Q =]0, T [×Ω),

which is a Hilbert space with the norm





T
∫

0

‖u(t)‖2Hr(Ω) dt+ ‖u‖
2
Hs(0,T,L2(Ω))





1
2

Hr(Ω) and Hs(0, T, L2(Ω)) are those defined previously.
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Now, we give some basic properties of the anisotropic Sobolev space H1,2.

The following result for the symmetric Sobolev spaceH1 may be extended to anisotropic

Sobolev space H1,2.

Theorem 1.26. Let Ω be a bounded open set with Lipschitz boundary and Ω1, Ω2 two

open subsets of Ω with Lipschitz boundaries such that

Ω1 ∪ Ω2 = Ω,

Ω1 ∩ Ω2 = ∅.

Set Γ = ∂Ω1 ∩ ∂Ω2. Let u1 ∈ H1(Ω1), u2 ∈ H1(Ω2) satisfying

u1 = u2, on Γ,

then the function u defined by

u =











u1 in Ω1,

u2 in Ω2,

belongs to H1(Ω).

Proof. It is clear that u ∈ L2(Ω). For an arbitrary i ∈ {1, 2, · · · , n} and a fixed ϕ ∈ D(Ω),

we have
〈

∂u

∂xi

, ϕ

〉

= −

〈

u,
∂ϕ

∂xi

〉

= −

∫

Ω1

u1
∂ϕ

∂xi

dx−

∫

Ω2

u2
∂ϕ

∂xi

dx.

For k = 1, 2
∫

Ωk

uk

∂ϕ

∂xi

dx = −

∫

Ωk

∂uk

∂xi

ϕ dx+

∫

Γ

ukϕν
(k)
i dx

because ϕ vanishes on ∂Ωk \ Γ, here ν(k) is the outward normal vector on ∂Ωk. So, since

ν(1) = −ν(2) on Γ, we have

〈

∂u

∂xi

, ϕ

〉

=

∫

Ω1

∂u1

∂xi

ϕ dx+

∫

Ω2

∂u2

∂xi

ϕ dx+

∫

Γ

(u2 − u1)ϕν
(1)
i dx.
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The boundary integral vanishs, so we obtain

∂u

∂xi

=















∂u1

∂xi

in Ω1,

∂u2

∂xi

in Ω2,

Since each
∂uk

∂xi

belongs to L2(Ωk), we conclude that
∂u

∂xi

∈ L2(Ω).

1.1.3 Fixed point theorems

In nonlinear analysis, the fixed point theorems apply to justify the existence of a solution

by a technique of transition to the nonlinear case from well-controlled linear cases. There

are several fixed point theorems and their applications vary depending on the model and

the hypotheses.

Theorem 1.27. (Schauder fixed-point theorem). Let E be a normed vector space and C

be a nonempty convex closed subset of E. If T is a continuous and compact mapping of

C into itself, then T has a fixed point in C.

Theorem 1.28. ( Tikhonov fixed-point theorem). Let T : K ⊆ X → K be a continuous

application leaving invariant a nonempty, convex and compact set of a locally convex

topological vector space. Then T admits a fixed point in K.

Corollary 1.29. (Schauder-Tikhonov fixed-point theorem). Let X a separable reflexive

Banach space. We suppose that

i) K is a nonempty, closed, bounded and convex set of X.

i) The application T : K → K is weakly sequentially continuous, i.e for any sequence

(xn) of K which converges weakly to x, when n → ∞, the sequence T (xn) of K

converges weakly to T (x).

So, T admits at least one fixed point in K.
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1.1.4 Technical Lemmas

Lemma 1.30. (Young’s inequality). Let p and q two positive reals such as
1

p
+

1

q
= 1.

For all positive reals a and b, we have

ab ≤
ap

p
+

bq

q
.

Theorem 1.31. (Gronwall [25], p7), Let y,Ψ and χ be real continuous functions defined

in [a, b], χ(t) ≥ 0 for t ∈ [a, b].We suppose that we have the inequality

∀t ∈ [a, b], y(t) ≤ Ψ(t) +

t
∫

a

χ(s)y(s) ds. (1.1)

Then

y(t) ≤ Ψ(t) +

t
∫

a

χ(s)Ψ(s) exp





t
∫

s

χ(u) du



 ds

in [a, b].

Proof. Let us consider the function g(t) =

t
∫

a

χ(u)y(u) du, t ∈ [a, b]. Then we have

g(a) = 0 and

g′(t) = χ(t)y(t)

≤ χ(t)Ψ(t) + χ(t)

t
∫

a

χ(s)y(s) ds

= χ(t)Ψ(t) + χ(t)g(t), t ∈ (a, b).

By multiplication with exp

(

−
t
∫

a

χ(s) ds

)

, we obtain

d

dt



g(t) exp



−

t
∫

a

χ(s) ds







 ≤ Ψ(t)χ(t) exp



−

t
∫

a

χ(s) ds



 .

By integration on [a, t], one gets

g(t) exp



−

t
∫

a

χ(s) ds



 ≤

t
∫

a

Ψ(u)χ(u) exp



−

u
∫

a

χ(s) ds



 du,
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so,

g(t) ≤

t
∫

a

Ψ(u)χ(u) exp





t
∫

u

χ(s) ds



 du, t ∈ [a, b].

Since y(t) ≤ Ψ(t) + g(t), the theorem is thus proved.

Next, we shall present some important corollaries resulting from Theorem 1.31.

Corollary 1.32. If Ψ is differentiable, then from (1.1) it follows that

y(t) ≤ Ψ(a)

t
∫

a

χ(u) du+

t
∫

a

exp





t
∫

s

χ(u) du



Ψ′(s) ds,

for all t ∈ [a, b].

Proof. It is easy to see that

−

t
∫

a

Ψ(s)
d

dt



exp





t
∫

s

χ(u) du







 ds

= −Ψ(s) exp





t
∫

s

χ(u) du





∣

∣

∣

∣

∣

∣

b

a

+

t
∫

a

exp





t
∫

s

χ(u) du



Ψ′(s) ds

= −Ψ(t) + Ψ(a) exp





t
∫

a

χ(u) du



+

t
∫

a

exp





t
∫

s

χ(u) du



Ψ′(s) ds

for all t ∈ [a, b].

Hence,

Ψ(t) +

t
∫

a

Ψ(u)χ(u) exp





t
∫

u

χ(s) ds



 du

= Ψ(a) exp





t
∫

a

χ(u) du



+

t
∫

a

exp





t
∫

s

χ(u) du



Ψ′(s) ds, t ∈ [a, b],

and the corollary is proved.

Corollary 1.33. If Ψ is constant, then from

y(t) ≤ Ψ+

t
∫

a

χ(s)y(s) ds.
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it follows that

y(t) ≤ Ψexp





t
∫

a

χ(s) ds



 .

1.2 Exact solutions of nonhomogeneous Burgers equa-

tion

The nonlinear Burgers equation can be transformed into the linear heat equation and

thus explicitly solved [27]. The linearization of the Burgers equation appeared in the

twentieth century. It was discovered by Eberhard Hopf and Julian Cole, and named the

Hopf-Cole Transformation in their honor. This transformation provides an interesting

method for solving the viscous Burgers equation, and has also opened other doors for

solving higher-order partial differential equations using similar methods.

The homogeneous Burgers equation ∂tu + u∂xu − ν∂2
xu = 0, where ν represents the

viscosity, is a model that has been solved explicitly, but only few specific cases have been

solved for the nonhomogeneous Burgers equation ∂tu + u∂xu − ν∂2
xu = f(x, t). If the

right-hand side depends only on time f(x, t) = g(t), this equation can be transformed

into an homogeneous Burgers equation in [39], the problem with f(x, t) = kx, f(x, t) =
kx

(2βt+ 1)2
, f(x, t) = g(t)x or with an elastic forcing term f(x, t) = −k2x + f(t) are

discussed and analytical solutions are obtained in [52], [45], [38] and [44]. In different

types of solutions of the forced Burgers equation with variable coefficients such as shock

solitary wave, triangular wave, N -wave and rational function solutions are found and

discussed.

1.2.1 Hopf-Cole transformation

In this part we consider the equation

∂tu+ u∂xu− ν∂2
xu = f(x, t), x ∈ R, t > 0, ν > 0, (1.2)
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with the initial data

u(x, 0) = u0(x). (1.3)

The Burgers equation (1.2) is connected with the linear heat equation by the Hopf-Cole

transformation

u = −2ν
∂xϕ

ϕ
. (1.4)

From (1.4), we have

∂tu =
2ν(∂tϕ∂xϕ− ϕ∂t(∂xϕ))

ϕ2
,

u∂xu =
4ν2∂xϕ(ϕ∂

2
xϕ− (∂xϕ)

2)

ϕ3
,

ν∂2
xu = −

2ν2(2(∂xϕ)
3 − 3ϕ∂xϕ∂

2
xϕ+ ϕ2∂3

xϕ)

ϕ3
.

By substituting in Burgers equation (1.2), we obtain

2ν(−ϕ∂t(∂xϕ) + ∂xϕ(∂tϕ− ν∂2
xϕ) + νϕ∂3

xϕ)

ϕ3
= f(x, t),

then

∂xϕ
(

∂tϕ− ν∂2
xϕ+ F (x, t)

ϕ

2ν

)

= ϕ
(

∂tϕ− ν∂2
xϕ+ F (x, t)

ϕ

2ν

)

x
,

where

F (x, t) =

∫

f(x, t)dx+ c(t).

Therefore, if ϕ solves the equation

∂tϕ− ν∂2
xϕ = −F (x, t)

ϕ

2ν
(1.5)

then u solves Equation (1.2).

To completely transform the problem, we still have to see the initial condition. To do

this, note that (1.4) can be written as follows

u = −2ν∂x (lnϕ) ,

then

ϕ(x, t) = ke

(

−
∫ u(x,t)

2ν
dx

)

.
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The initial condition (1.3) must therefore be transformed into

ϕ(x, 0) = ϕ0(x) = e

(

−
∫ u0(x)

2ν
dx

)

.

So, we have reduced Equation (1.2) with the initial data (1.3) to the problem







∂tϕ− ν∂2
xϕ = −F (x, t)

ϕ

2ν
, x ∈ R, t > 0, ν > 0,

ϕ(x, 0) = ϕ0(x) = e

(

−
∫ u0(x)

2ν
dx

)

, x ∈ R.

In what follows we are not interested in the uniqueness of the solution. So, we pass over

the initial condition, and we try to find one of the solutions of the burgers equation.

1.2.2 Burgers equation with particular second member

In this section we obtain new exact solutions for the forced Burgers equation

∂tu+ u∂xu− ν∂2
xu = f(t)x+ g(t), (1.6)

where f , g are arbitrary functions that depend on t, using the following transformation

u(x, t) = a(t)
∂zv(τ, z)

v(τ, z)
+ b(t)x+ c(t)

τ = τ(t), z = α(t)x+ β(t)

(1.7)

The functions α(t), β(t), τ(t) and z(x, t) are to determine later.

We have

∂tv(τ, z) = τ ′∂τv + (α′x+ β′)∂zv,

∂z(∂tv)(τ, z) = τ ′∂z(∂τv) + (α′x+ β′)∂2
zv,

∂xv(τ, z) = α∂zv,

∂z(∂xv)(τ, z) = α∂2
zv,

∂x(v
2)(τ, z) = 2αv∂zv,

∂x(∂zv
2)(τ, z) = 2α∂zv∂

2
zv,
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then, we get

∂tu = a′
∂zv

v
+ a

(α′x+ β′) v∂2
zv + τ ′v∂z(∂τv)− (α′x+ β′) ∂zv

2 − τ ′∂τv∂zv

v2
+ b′x+ c′,

∂xu = aα
v∂2

zv − v2z
v2

+ b,

u∂xu = a2α
v∂zv∂

2
zv − (∂zv)

3

v3
+ aα(bx+ c)

v∂2
zv − (∂zv)

2

v2
+ ab

∂zv

v
+ b2x+ bc,

and

∂2
xu =aα2v∂

3
zv − 3∂zv∂

2
zv

v2
+ 2aα2 (∂zv)

3

v3
.

So, Equation (1.6), can be written as follows

aτ ′
∂z(∂τv)

v
− νaα2∂

3
zv

v
+ (a2α + 3νaα2)

∂zv∂
2
zv

v2
− aτ ′

∂τv∂zv

v2
+ (a′ + ab)

∂zv

v

− (a2α + 2νaα2)
(∂zv)

3

v3
− a (αbx+ αc+ α′x+ β′)

(∂zv)
2

v2
+ a (αbx+ αc+ α′x+ β′)

∂2
zv

v

+ b2x+ bc+ b′x+ c′ − f(t)x− g(t) = 0.

Then

aτ ′
∂z(∂τv)

v
− νaα2∂

3
zv

v
− aτ ′

∂τv∂zv

v2
+ νaα2∂zv∂

2
zv

v2

+ (a2α + 2νaα2)
∂zv∂

2
zv

v2
+ (a′ + ab)

∂zv

v
− (a2α + 2νaα2)

(∂zv)
3

v3

− a ((αb+ α′)x+ αc+ β′)
(∂zv)

2

v2
+ a ((αb+ α′)x+ αc+ β′)

∂2
zv

v

+ ((b2 + b′ − f(t))x+ bc+ c′ − g(t) = 0.

by considering the following conditions

aτ ′(t)− νaα2 = 0,

α′ + αb = 0,

β′ + αc = 0,

bc+ c′ − g = 0,

b2 + b′ − f(t) = 0,

we obtain

aτ ′
∂z(∂τv)

v
− νaα2∂

3
zv

v
− aτ ′

∂τv∂zv

v2
+ νaα2∂zv∂

2
zv

v2
= 0.
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Putting a2α + 2νaα2 = 0, we find that v satisfies

∂zv(∂zv − ν∂2
zv)− v∂z(∂zv − ν∂2

zv) = 0,

which yields to the linear heat equation,

∂τv − ν∂2
zv = 0.

The unknown functions satisfy the following system of ordinary differential equations











































τ ′ = να2(t),

a = −2να,

α′ = −αb,

β′ = −αc,

c′ = g − bc.

To solve this system we start with the third equation

α(t) = c1 exp

(

−

∫

b(t)dt

)

,

β(t) = −

∫

α(t)c(t)dt+ c2,

τ(t) = ν

∫

α2(t)dt+ c3,

a(t) = −2να(t),

c(t) = α(t)

∫

g(t)

α(t)
dt− c4α(t),

here c1, c2, c3 and c4 are arbitrary constants.

Then, solving Equation (1.6) is equivalent to solve the following two equations

∂zv = ν∂2
zv, b′(t) = −b2(t) + f(t).

We note that v satisfies the heat equation, and b is a solution of the Riccati equation.

Example 1.34. For f(t) = g(t) = 1, Equation (1.6) becomes

∂tu+ u∂xu− ν∂2
xu = x+ 1.
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By substituting for example v(z, τ) = z2 + 2ντ as a solution of the linear heat equation

into Transformation (1.7), we can get for the precedent equation the following solution

u(x, t) = 2νe−t e−t − 2x− 1
(

x−
e−t

2
+ 1

)2

− ν

+ x+ 1− e−t.

1.2.3 Burgers equation with other second member

In this section we present exact solutions for the following forced Burgers equations

∂tu+ u∂xu− ν∂2
xu = f(t), (1.8)

∂tu+ u∂xu− ν∂2
xu = g(x), (1.9)

∂tu+ u∂xu− ν∂2
xu = αeαx+βt, (1.10)

where f , is a function that depends on t, and g is a function that depends on x.

By the Hopf-Cole transformation

u = −2ν
∂xϕ

ϕ
,

if ϕ solve equations

ϕ− ν∂2
xϕ+

1

2ν
xf(t)ϕ = 0, (1.11)

ϕ− ν∂2
xϕ+G(x)ϕ = 0, (where G(x) =

∫

g(x) dx) (1.12)

ϕ− ν∂2
xϕ+

1

2ν
eαx+βtϕ = 0, (1.13)

then u solve Equations (1.8), (1.9) and (1.10).

The transformations that will be used in the following are cited in [40].

a) Equation (1.11)

Let the transformation

ϕ(x, t) = w(z, t) exp

(

xF (t) + ν

∫

F 2(t)dt

)

,

z = x+ 2ν

∫

F (t)dt,
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where F (t) = −
1

2ν

∫

f(t)dt.

We have

∂tϕ =

(

∂tw + ∂zw∂tz +

(

−
1

2ν
xf(t) + νF 2(t)

)

w

)

exp

(

xF (t) + ν

∫

F 2(t)dt

)

=

(

∂tw + 2νF (t)∂zw +

(

−
1

2ν
xf(t) + νF 2(t)

)

w

)

exp

(

xF (t) + ν

∫

F 2(t)dt

)

,

∂xϕ = (∂zw∂xz + F (t)w) exp

(

xF (t) + ν

∫

F 2(t)dt

)

= (∂zw + F (t)w) exp

(

xF (t) + ν

∫

F 2(t)dt

)

,

and

∂2
xϕ = (∂2

zw + F (t)∂zw + F (t) (∂zw + F (t)w)) exp

(

xF (t) + ν

∫

F 2(t)dt

)

= (∂2
zw + 2F (t)∂zw + F 2(t)w) exp

(

xF (t) + ν

∫

F 2(t)dt

)

.

Injecting the precedent results into (1.11), we obtain

∂tw+2νF (t)∂zw−
1

2ν
xf(t)w+νF 2(t)w−ν∂2

zw−2νF (t)∂zw−νF 2(t)w+
1

2ν
xf(t)w = 0,

which leads to the heat equation

wt − ν∂2
zw = 0.

b) Equation (1.12)

There are particular solutions in the product form

ϕ(x, t) = eλtw(x),

where λ is an arbitrary constant and w is determined an ordinary differential equation.

In fact,

λeλtw − νeλtw′′ +G(x)eλtw = 0,

then

λw′′ + (G(x) + λ)w = 0.
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Remark 1.35. From the above we can obtain a particular solution for the Burgers equa-

tion when the second member is f(t) + g(x),

c) Equation (1.13)

From the transformation

ϕ(x, t) = w(z, t)eµx, z = x+
β

α
t where µ =

β

2να
.

We have

∂tϕ = (∂zw∂tz + ∂tw) e
µ(z + β

α
t)

=

(

β

α
∂zw + ∂tw

)

eµ(z + β

α
t),

∂xϕ = (∂zw∂xz + µw) eµ(z − β

α
t)

= (∂zw + µw) eµ(z − β

α
t),

and

∂2
xϕ = (∂x(∂zw) + µ∂xw + µ∂xw + µ2w) eµ(z − β

α
t)

= (∂2
zw + 2µ∂zw + µ2w) eµ(z − β

α
t).

Submitting into (1.11), we obtain

∂tw − ν∂2
zw +

(

1

2ν
eαz − 3νµ2

)

w = 0.

witch is of the form (1.12) where G(z) =
1

2ν
eαz − 3νµ2.
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