
CHAPTER

5 On the regularity of the

heat equation solution in

non-cylindrical domains:

two approaches

Abstract. In this work, we investigate the behavior of the solution of the Cauchy-

Dirichlet problem for a parabolic equation set in a three-dimensional domain with edges.

We also give new regularity results for the weak solution of this equation in terms of the

regularity of the initial data.

Key words. Parabolic equations, heat equation, polyhedral domains, edges, anisotropic

Sobolev spaces, interpolation theory.
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5.1 Introduction

At the present time there exists a comprehensive theory of boundary value problems for

parabolic equations and systems with a smooth boundary. One of the central results of

this theory consists in the fact that if the coe¢cients of the equation and of the boundary

operators, their right-hand sides, and the boundary of the domain are su¢ciently smooth

(the initial and boundary conditions must also satisfy the so-called compatibility condi-

tions), then the solution itself of the problem is correspondingly smooth, see [23], [1], [43]

and [35]. The lack of boundary smoothness in these problems leads to the occurrence of

singularities of the solution in the neighbourhood of non-regular points of the boundary.

It is well known that there are two main approaches for the study of boundary value

problems in non-regular domains. We can impose conditions on the non-regular domains

to obtain regular solutions (see, for example [58]), or we work directly in the non-regular

domains and we obtain singular solutions. The second approach will be illustrated in this

work by the analysis of the heat equation in a domain of R3 with edge.

The �rst part of this work is concerned with the extension of solvability results for a

parabolic equation, set in a non-convex polygon obtained in [60], to the case of a polyhedral

domain with edge on the boundary. In a previous work [26], we have proved that under

some conditions on the functions of the parametrization of a three-dimensional domain,

the solution of the heat equation is "regular". The domains considered there include all

the convex polyhedral domains (see, Sadallah [59]), but not all the polyhedral domains.

Let G be a non-convex bounded polyhedral domain of R3. In G, we consider the

boundary value problem 8
>>><
>>>:

@tu� @2xu� @2yu = f

u=@pG = 0,

(5.1.1)

where @pG is the parabolic boundary of G and f 2 L2 (G). From now on, the parabolic

operator @t � @2x � @2y will be denoted by L.

The solvability of this kind of problems in the case of one-dimensional space variable

has been investigated, for instance, in Aref�ev and Bagirov [4], [5] and in Sadallah [60]
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5.1. Introduction

where results concerning the behavior of the solution of the heat equation in various sin-

gular domains of R2 were obtained. Solvability results for parabolic equations in domains

with edges can be found in [13] and [54]. The solutions of boundary value problems, when

posed and solved in non-smooth domains like polygons and polyhedra, have singular parts

which are described in terms of special functions depending on the geometry of the domain

and on the di¤erential operators (see, for example, [20], [21] and the references therein).

The aim of the �rst approach is two-fold: Firstly, we exhibit singularities which appear

in the solution u of Problem (5.1.1). Secondly, we study their smoothness. More precisely,

we prove that there exist two functions v and w such that u = v + w where v belongs to

the anisotropic Sobolev space

H1;2 (G) =
�
v 2 L2 (G) : @tv; @

j
xv; @

j
yv; @

2
xyv 2 L

2 (G) ; j = 1; 2
	

whereas the singular part w is in the space Hr;2r (G) with r < 3=4, de�ned as an interpo-

lation space between H1;2 (G) and L2 (G), (the Sobolev spaces Hr;2r (G) are those de�ned

in Lions and Magenes [43]).

Our interest in the second approach is the regularity of the solutions of the heat

equation posed in a non-cylindrical domain - subject to Dirichlet conditions on the lateral

boundary- in terms of the regularity of the inhomogeneous initial Cauchy data.

The plan of this chapter is as follows. In Section 5.2, we begin by preliminaries where

we de�ne the non-convex polyhedral domain and the basic functional spaces, in which we

will work. Then, we describe the asymptotic behavior of the solution in the neighborhood

of an edge in a model domain which is the union of two parallelepipeds. We will show

that the solution may be written as a sum of a function which is the solution of a problem

of type (5.1.1) and an in�nite number of functions which are solutions of an homogeneous

problem related to the problem (5.1.1). The main result concerning the optimal regularity

of the singular part w is presented in Theorem 5.3.2, that is,

w 2 Hr;2r (G)() r < 3=4.

The proof is based on the Fourier transform as well as on some properties of interpolation

theory and the fractional powers of operators. In Section 5.3, by using some interpolation
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results we prove the regularity of the weak solution of the heat equation set in a cylindrical

domain in terms of the initial data. Finally, we use this case to prove new results of

regularity of the weak solutions of the heat equation in a domain which is the union of

two cylinders.

5.2 First approach

5.2.1 Description of the domain

In this section we introduce some notations de�ning the non-convex polyhedral domain

in which we will work. As a model, we choose a domain Q, which is the union of two

parallelepipeds, see Fig. 8. Q is the simplest polyhedral domain which guarantees the ap-

pearance of the singular part in the solution of Problem (5.1.1). Hereafter, some notations

in a coordinates system of variables (t; x; y):

Q = Q1 [ Q2 [ 
, where Q1 = ]�1; 0[ � ]�1; 1[ � ]0; 1[, Q2 = ]0; 1[
3 and 
 = f0g �

]0; 1[� ]0; 1[.

Let us now give some notations concerning the boundary (faces and edge) of the

polyhedral domain de�ned above.


1 = f�1g � ]�1; 1[ � ]0; 1[, 

0

1 = ]�1; 0[ � f1g � ]0; 1[ [ ]�1; 0[ � f�1g � ]0; 1[,


001 = f0g�]�1; 0[�]0; 1[, 

0
2 = ]0; 1[�f0g�]0; 1[[]0; 1[�f1g�]0; 1[, 


00
2 = f1g�]0; 1[�]0; 1[,

A = f0g � f0g � ]0; 1[.
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5.2. First approach

Fig. 8. The polyhedral domain Q.

5.2.2 Function spaces

We will need some anisotropic Sobolev spaces (see [43]), which we recall in the following

de�nitions

Hr;s
�
R2
�
=
n
u 2 L2

�
R2
�
:
h�
1 + �2

�r=2
+
�
1 + � 2

�s=2i bu 2 L2
�
R2
�o

where bu is the Fourier transform of u and r, s are two positive numbers. We put

Hr;s (
) =
�
u=
 : u 2 H

r;s
�
R2
�	
, (5.2.1)

with 
 is an open subset of R2. Hr;s (
) can also be de�ned as a real interpolation space

between Hr=(1��);s=(1��) (
) and L2 (
), � 2 ]0; 1[, (see [67])

Hr;s (
) =
�
Hr=(1��);s=(1��) (
) ; L2 (
)

�
�
. (5.2.2)

In this work, we consider the case s = 2r, � = 1� r,

Hr;2r (
) =
�
H1;2 (
) ; L2 (
)

�
1�r

8r 2 ]0; 1[ . (5.2.3)
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5.2. First approach

Putting s = 2r in Relationship (5.2.1), we obtain

Hr;2r (
) =
�
u=
 : u 2 H

r;2r
�
R2
�	
. (5.2.4)

We have
�
u=
 : u 2 H

r;2r
�
R2
�	
�
�
H1;2 (
) ; L2 (
)

�
1�r

8r 2 ]0; 1[ ,

and if 
 has "the horn property" of Besov [9], then

�
u=
 : u 2 H

r;2r
�
R2
�	
=
�
H1;2 (
) ; L2 (
)

�
1�r

8r 2 ]0; 1[ .

5.2.3 Properties of solutions to Problem (5.1.1) in the model

domain Q

In Q, we consider the boundary value problem
8
<
:

Lu = f 2 L2 (Q)

u=@Q�(
001[
002)
= 0,

(5.2.5)

@Q is the boundary of Q.

Throughout this section, f stands for an arbitrary �xed element of L2 (Q) and fi =

f=Qi, i = 1,2. Recall the following result (see [43])

Theorem 5.2.1 The problem
8
<
:

Lu1 = f1 2 L
2 (Q1)

u1=@Q1�(
[A[
001)
= 0,

(5.2.6)

admits a (unique) solution u1 2 H
1;2 (Q1).

Hereafter, we denote the trace u1=
 by ', which is in the Sobolev space H
1 (
) because

u1 2 H
1;2 (Q1) (cf. [19]).

Now, consider the following problem on Q2

8
>>><
>>>:

Lu2 = f2 2 L
2 (Q2)

u2=
 = ' 2 H1 (
) ,

u2=@Q2�(
[
002)
= 0.

(5.2.7)
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5.2. First approach

It is known that this problem admits a unique solution u2 in H
1;2 (Q2) if and only if some

compatibility conditions are ful�lled, that is, ' 2 H1
0 (
) i.e., (cf. [43])

8
<
:
a) '=@
�A = 0

b) '=A = 0.

Remark 5.2.1 We can observe that the boundary conditions of Problem (5.2.6) yield

'=@
�A = 0. So the compatibility condition a) is automatically satis�ed. On the other

hand, we have '=A = u1=A but we do not know whether u1=A vanishes. This is the reason

why singularities may arise in the solution u2 of Problem (5.2.7), and consequently, in

the solution u of Problem (5.2.5).

Remark 5.2.2 The solution u of Problem (5.2.5) will be de�ned by

u =

8
<
:

u1 in Q1

u2 in Q2,

where u1 and u2 are the solutions of (5.2.6) and (5.2.7) respectively. Observe that u1=
 =

u2=
 = ' and u1 2 H1;2 (Q1). Therefore, if u2 2 H1;2 (Q2) then u 2 H1;2 (Q) (cf. [19]).

On the other hand, u is regular in Q1 because u=Q1 = u1 2 H
1;2 (Q1), and this means that

the singularities which we seek are contained in u=Q2, i.e., in u2. So, in the sequel, we

will restrict ourselves to u2.

In the following result, we will introduce some functions (Pj)j2N which enable us to

study the singular part of u2.

Lemma 5.2.1 Let

8 (x; y) 2 
, 8j 2 N, Pj (x; y) = sin j�y cos
�

2
x.

The functions (Pj)j2N have the following properties

a) Pj=@
�A = 0 8j 2 N,

b) Pj=A = sin j�y 8j 2 N, 8y 2 ]0; 1[,

c) Pj 2 H
1 (
) 8j 2 N.
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5.2. First approach

The determination of the smoothness of the singularities arising in u2 needs the study

of the following problem set in Q2
8
>>><
>>>:

Lwj = 0,

wj=
 = Pj , 8j 2 N,

wj=@Q2�(
[
002)
= 0,

(5.2.8)

where Pj are the functions de�ned in Lemma 5.2.1. Problem (5.2.8) admits a unique

solution wj 2 L
2 (Q2) for j 2 N (see, for instance, [48]). So, we can de�ne the function v

on 
 by

v = u2 �
X

j2N

ajwj

where u2 is the solution of Problem (5.2.7) and (aj)j2N are the coe¢cients of the decom-

position of '=A in L
2 (A)

'=A =
X

j2N

ajPj.

Indeed, the functions Pj=A = sin j�y are an orthogonal basis of L
2 (A). So, by virtue of

properties of (Pj)j2N in Lemma 5.2.1, it is easy to verify that

v=
 = '�
X

j2N

ajPj 2 H
1
0 (
)

and v is the (unique) solution of the following problem

8
>>>><
>>>>:

Lv = f2 2 L
2 (Q2) ,

v=
 = '�
X

j2N

ajPj,

v=@Q2�(
[
002)
= 0.

Therefore v 2 H1;2 (Q2) and we have proved the following result

Proposition 5.2.1 The solution u2 of Problem (5.2.7) may be written as

u2 = v +
X

j2N

ajwj

where v 2 H1;2 (Q2) and wj stands for the solution of Problem (5.2.8), for j 2 N.
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5.2. First approach

Remark 5.2.3 Observe that v is the regular part of the solution u2 while
P

j2N ajwj

denotes the singular part which is generated by the singularities wj, j 2 N. We also

note that these singularities are solutions of Problem (5.2.8) and are independent of the

data f in Problem (5.2.5). However, the singular part
P

j2N ajwj depends on f via the

coe¢cients aj, j 2 N. Indeed, aj, j 2 N depend on ' and the solution u1 corresponding

to the second member f1 = f=Q1 is such that u1=
 = '.

5.2.4 Smoothness of the singular solutions (wj)j2N

The sequence of functions ('j;k)j;k2N de�ned by 'j;k (x; y) = 2 sin j�y sin k�x in 
 is an

orthonormal basis of L2 (
), formed by eigenfunctions of the operator � = �@2x � @2y

with domain D (�) = H2 (
) \ H1
0 (
) : Denote by �j;k = 2�2 (j2 + k2) the eigenvalue

corresponding to each 'j;k.

Since functions (Pj)j2N de�ned in Lemma 5.2.1 are in L
2 (
), we may write

8i 2 N Pi (x; y) =
X

j;k2N

bi;j;k'j;k (x; y) .

So, the solution wi of Problem (5.2.8) can be written as

wi (t; x; y) =
X

j;k2N

bi;j;k exp (��j;kt)'j;k (x; y) .

The particular form of the functions 'j;k and Pj enable us to write

Pj (x; y) =
X

k2N

bj;k'j;k (x; y) . (5.2.9)

Integrating by parts in (5.2.9), we arrive at

bj;k =

Z 1

0

sin k�y: cos
�

2
ydy =

4

�

k

1 + 4k2
.

On the other hand, by (5.2.9), we deduce that the solution wj of Problem (5.2.8) may be

written as

wj (t; x; y) =
X

k2N

bj;k exp (��j;kt)'j;k (x; y) . (5.2.10)
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5.2. First approach

Now, our aim is to determine the largest real number r 2 ]0; 1] such that wj 2

Hr;2r (Q2). This question will be treated in two steps. Recall that for r 2 ]0; 1]

Hr;2r (Q2) = Hr
�
]0; 1[ ;L2 (
)

�
\ L2

�
]0; 1[ ;H2r (
)

�
.

Step 1. When does wj lie in H
r (]0; 1[ ;L2 (
))?

To answer this question we begin by extending wj with respect to t and we set

fwj (t; x; y) =
X

k2N

bj;k exp (��j;k jtj)'j;k (x; y) . (5.2.11)

It is known that

fwj 2 Hr
�
R;L2 (
)

�
if and only if

�
1 + t2

�r=2cfwj 2 L2 (R� 
)

where cfwj denotes the Fourier transform of fwj with respect to t. So, (5.2.11) gives

cfwj (t; x; y) =
X

k2N

bj;k
�j;k

�2j;k + t2
'j;k (x; y) .

Therefore,




(1 + t2)r=2cfwj




2

L2(R�
)
=

Z +1

�1

(1 + t2)
r



cfwj





2

L2(
)
dt

=

Z +1

�1

(1 + t2)
r
X

k2N

b2j;k
�2j;k

(�2j;k + t
2)2
dt

=
X

k2N

b2j;k�
2r�1
j;k

Z +1

�1

1

(1 + z2)2�r
dz.

We can observe that Z +1

�1

1

(1 + z2)2�r
dz <1() r < 3=2.

Then, if the condition r < 3=2 is satis�ed,

X

k2N

b2j;k�
2r�1
j;k

Z +1

�1

1

(1 + z2)2�r
dz <1 ()

X

k2N

b2j;k�
2r�1
j;k <1

() r < 3=4,

(note that the condition r < 3=2 is then satis�ed). So the following result is proved
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Proposition 5.2.2 For all j 2 N, we have

wj 2 H
r
�
]0; 1[ ;L2 (
)

�
() r < 3=4.

Step 2. When does wj lie in L
2 (]0; 1[ ;H2r (
))?

Using the fractional powers �r of the operator � = �@2x � @2y (cf. [67]), we obtain, by

(5.2.10),

�rwj =
X

k2N

bj;k�
r
j;k exp (��j;kt)'j;k for r 2 ]0; 1[ . (5.2.12)

On the other hand, we have

kwjk
2
L2(]0;1[;H2r(
)) =

Z 1

0

kwj (t; :; :)k
2
H2r(
) dt. (5.2.13)

But the domain D (�r) of the operator �r may be obtained by interpolation (we use here

the notations of [43])

D (�r) =
�
D (�) ; L2 (
)

�
1�r

� H2r (
)

with the equivalence of the norms of D (�r) and H2r (
) : Then we deduce, by (5.2.13),

the equivalence of the two norms kwjkL2(]0;1[;H2r(
)) and

�Z 1

0

kwj (t; :; :)k
2
D(�r) dt

�1=2
. So,

relationship (5.2.12) shows that wj 2 L
2 (]0; 1[ ;H2r (
)) if and only if the series

X

k2N

b2j;k�
2r
j;k

Z 1

0

exp (�2�j;kt) dt

is convergent. It is easy to see that this convergence holds if and only if r < 3=4.

Observe that this condition is the same as the necessary and su¢cient condition ob-

tained in Poposition 5.2.2. So, the following result is proved

Proposition 5.2.3

wj 2 L
2
�
]0; 1[ ;H2r (
)

�
() r < 3=4.

Now, our main result follows from Poposition 5.2.2 and Proposition 5.2.3, that is,

Theorem 5.2.2

wj 2 H
r;2r (Q2)() r < 3=4.
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5.2.5 Smoothness of the singular part
P

j2N ajwj

In order to study the behavior of the singular part
P

j2N ajwj, one must know the behavior

of the coe¢cients aj, j 2 N. We will need the following result

Lemma 5.2.2 We have
X

j2N

j:a2j <1.

Proof. Since u1=
 2 H
1 (
), we deduce from the trace theory (see, for instance, [21])

that '=A 2 H
1=2
00 (A) (the closure in H

1=2 of the space of C1 functions with compact

support in A, see [43]). So,

'=A =
X

j2N

aj: sin j�y 2 H
1=2
00 (A)

which means that 





X

j2N

aj
p
j: sin j�y







L2(A)

<1

or equivalently
X

j2N

ja2j <1.

Setting

U =
X

j2N

ajwj =
X

j;k2N

ajbj;k exp (��j;kt)'j;k (x; y) .

We look for the largest r > 0 such that U 2 Hr;2r (Q2).

Proposition 5.2.4 1)

U 2 Hr
�
]0; 1[ ;L2 (
)

�
() r < 3=4.

2)

U 2 L2
�
]0; 1[ ;H2r (
)

�
() r < 3=4.

93



5.2. First approach

Proof. 1) By using a similar argument like that used in the proof of Proposition 5.2.2,

we see that

U 2 Hr
�
]0; 1[ ;L2 (
)

�
()

X

j;k2N

a2j
1

k2
�
j2 + k2

�2r�1
<1.

Due to Lemma 5.2.2, the condition r < 3=4 guarantees the convergence of the above series.

On the other hand, this convergence leads to the convergence of the series
P

k2N

1

k4�4r

when r < 3=4.

2) By using a similar argument like that used in the proof of Proposition 5.2.3, we

obtain

U 2 L2 (]0; 1[ ;H2r (
)) ()

Z 1

0

kUk2H2r(
) dt <1

()

Z 1

0







X

j;k2N

ajbj;k�
r
j;k exp (��j;kt)'j;k








2

L2(
)

dt <1

()
1

2

X

j;k2N

a2jb
2
j;k�

2r�1
j;k (exp (�2�j;k)� 1) <1.

It is easy to see that this convergence holds if and only if r < 3=4, because bj;k � 1=k for

each j 2 N

From Poposition 5.2.4, we have

Theorem 5.2.3

U 2 Hr;2r (Q2)() r < 3=4.

Remark 5.2.4 Since the solution u of Problem (5.2.5) is de�ned by

u =

8
<
:

u1 in Q1

u2 in Q2,

where u1 2 H
1;2 (Q1) and u2 = v + U with v 2 H1;2 (Q2) and U is singular, then we can

write in Q

u = UR + US

with UR 2 H
1;2 (Q) and

US 2 H
r;2r (Q)() r < 3=4.

Remark 5.2.5 If '=A = 0 i.e., u1=
 2 H1
0 (
), then aj = 0 for each j 2 N. Therefore

u 2 H1;2 (Q) since the singular part U =
P

j2N ajwj vanishes.
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5.3 Second approach

5.3.1 Cylindrical case

In this subsection, Problem 2.2.3 of Chapter 2 will be revisited. Indeed, let 
0 an open

bounded set of Rn with boundary � and Q0 the cylinder R+ � 
0 with lateral boundary

� = R+ � �. We assume that 
0 is convex or of class C2.

Consider in Q0 the following boundary value problem

8
>>><
>>>:

@tu��u = 0 in R+ � 
0

u = 0 on �

u (0; x) = u0 (x) , x 2 
0.

(5.3.1)

Our interest is the regularity of the solution u of (5.3.1) in terms of the regularity of the

initial data u0. The cases where u0 2 H1
0 (
0) or u0 2 L2 (
0) are treated in Theorem

2.2.2 of Chapter 2. Here, we look for an intermediate regularity result similar to those

given in Theorem 2.2.2 of Chapter 2. More precisely, we consider the case of an initial

data between H1
0 (
0) and L

2 (
0). So, in the sequel we will assume that u0 2 Hr
0 (
0),

0 � r � 1 where

Hr
0 (
0) = fu 2 H

r (
0) ; u = 0 on �g

for 1=2 < r � 1.

Hr
0 (
0) = H

1=2
00 (
0)

for r = 1=2,

Hr
0 (
0) = Hr (
0)

for 0 � r < 1=2.

Thus Hr
0 (
0) is the interpolation space [H

1
0 (
0) ; L

2 (
0)]1�r of order 1 � r between

H1
0 (
0) and L

2 (
0). We look for the regularity of u in term of r. For 0 � r � 1, we

recall that the space Hr;2r (Q0) can be de�ned by

Hr;2r (Q0) = L2
�
R+;H2r (
0)

�
\Hr

�
R+;L2 (
0)

�
.
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Lemma 5.3.1 Let u0 2 L2 (
0) : Then the solution u of Problem (5.3.1) associated to

u0 is in H
1=2 (R+;L2 (
0)). Moreover, there exists a positive constant C (independent of

u0) such that

kukH1=2(R+;L2(
0))
� C ku0kL2(
0) :

Proof. Consider a sequence of spectral elements (�k; 'k), k 2 N of the Dirichlet

problem for the Laplace operator
8
>>><
>>>:

��'k = �k'k

'k 2 H
1
0 (
0)

k'kkL2(
0) = 1.

The sequence ('k)k2N is a basis of L
2 (
0). If u0 2 L

2 (
0) we may write

u0 (x) =
X

k2N

ck'k (x)

with ku0k
2
L2(
0)

=
P

k2N c
2
k. The solution associated to u0 is

u (t; x) =
X

k2N

ck exp (��kt)'k (x) .

Note eu the extension of u to R, i.e.,

eu (t; x) =
X

k2N

ck exp (��k jtj)'k (x) .

By the Fourier transform

beu (�; x) = 2
X

k2N

ck�k
�2 + �2k

'k (x) ,

from which 


beu (�; :)




2

L2(
0)
=
X

k2N

4c2k
�2k

(�2 + �2k)
2

and by elementary calculations, we check easily that

Z

R

j�j



beu (�; :)





2

L2(
0)
d� = 4�

X
c2k.

Consequently

eu 2 H1=2
�
R;L2 (
0)

�
,
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then

u 2 H1=2
�
R+;L2 (
0)

�

by restriction of eu to t > 0.
Our second main result in this work is

Theorem 5.3.1 For given u0 in H
r
0 (
0) 0 � r � 1, Problem (5.3.1) has a unique weak

solution in H(1+r)=2;1+r (Q0).

Proof. Let u0 2 H
r
0 (
0) 0 � r � 1, then u0 2 L

2 (
0) and consequently (5.3.1) admits

a unique weak solution (see Theorem 2.2.2) u in L2 (R+;H1
0 (
0)). In order to show that

this solution is in L2 (R+;H1+r (
0)) it su¢ces to interpolate the operator S which asso-

ciates u to u0. Indeed S : u0 7! u is linear continuous from H1
0 (
0) into L

2 (R+;H2 (
0))

and from L2 (
0) into L
2 (R+;H1 (
0)) (see Theorem 2.2.2). By interpolation, it is linear

continuous from [H1
0 (
0); L

2 (
0)]1�r into [L
2 (R+;H2 (
0)) ; L

2 (R+;H1 (
0))]1�r . But,

thanks to some interpolation theory properties (see Triebel [67]):

[L2 (R+;H2 (
0)) ; L
2 (R+;H1 (
0))]1�r = L2

�
R+; [H2 (
0) ; H

1 (
0)]1�r
�

= L2 (R+;H1+r (
0)) .

Then, S is linear continuous from Hr
0 (
0) into L

2 (R+;H1+r (
0)).

We can interpolate again S for proving u 2 H(1+r)=2 (R+;L2 (
0)). Indeed, S is lin-

ear continuous from L2 (
0) into H
1=2 (R+;L2 (
0)) (see Lemma 5.3.1) and from H1

0 (
0)

into H1 (R+;L2 (
0)) (see Theorem 2.2.2). By interpolation, it is linear continuous from

[H1
0 (
0); L

2 (
0)]1�r into
�
H1=2 (R+;L2 (
0)) ; H1 (R+;L2 (
0))

�
1�r
. But, (see, Triebel

[67])
�
H1=2

�
R+;L2 (
0)

�
; H1

�
R+;L2 (
0)

��
1�r

= H(1+r)=2
�
R+;L2 (
0)

�
.

Then, S is linear continuous from Hr
0 (
0) into H

(1+r)=2 (R+;L2 (
0)). This ends the proof

of Theorem 5.3.1.

Remark 5.3.1 The result of Theorem 5.3.1 is valid if Q0 = ]0; T [�
0 with T > 0 instead

of Q0 = R+ � 
0.
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Corollary 5.3.1 The problem
8
>>><
>>>:

@tv ��v = f 2 L2 (Q0)

v = 0 on �

v (0; x) = u0 (x) 2 H
r
0 (
0) , 0 � r � 1,

(5.3.2)

admits a unique solution v 2 H(1+r)=2;1+r (Q0).

Proof. Let v1 and v2 be the solutions of the following problems
8
>>><
>>>:

@tv1 ��v1 = 0 in Q0

v1 = 0 on �

v1 (0; x) = u0 (x) 2 H
r
0 (
0) , 0 � r � 1,

(5.3.3)

8
>>><
>>>:

@tv2 ��v2 = f 2 L2 (Q0)

v2 = 0 on �

v2 (0; x) = 0.

(5.3.4)

It is well known that Problem (5.3.4) admits a unique solution v2 2 H
1;2 (Q0). Thanks to

Theorem 5.3.1 we know that Problem (5.3.3) admits a unique solution v1 2 H
(1+r)=2;1+r (Q0).

Then, the linearity of the operator @t �� ends the proof.

5.3.2 Non-cylindrical case

In this subsection, we combine results of Sections 5.2 and 5.3 to obtain new results of

existence, uniqueness with optimal regularity for the heat equation in a domain which is

the union of two cylinders of R3.

Let 
1, 
2 be two bounded open sets of R2 with boundaries �1, �2, respectively. We

denote C1, C2 the cylinders ]0; T1[�
1, ]T1; T2[�
2 (T1, T2 are �nite positive numbers such

that T1 < T2), with lateral boundaries �1 = ]0; T1[� �1, �2 = ]T1; T2[� �2, respectively.

We assume that 
1, 
2 are convex or of class C
2 and we denote the union of C1, C2 by

C. So, we can distinguish four cases:

a) 
1 \ 
2 = ? : This case has no interest here because the solution u1 in C1

is independent of the solution u2 in C2; then the study is the same as in the previous

subsection.
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b) 
1 � 
2, then C = C1 [ C2 [ (fT1g � 
1).

c) 
2  
1, then C = C1 [ C2 [ (fT1g � 
2).

d) 
1 \ 
2 6= ?, with 
1 " 
2 and 
2 " 
1 : This case can be deduced from c).

So, it is su¢cient to see the cases b) and c). In the sequel, f stands for an arbitrary

�xed element of L2 (C) and fi = f=Ci, i = 1,2. Our goal is to study the regularity of the

solution of the heat equation in C when 
1 � 
2 or 
2  
1:

The case where 
1 � 
2

Here C = C1 [ C2 [ (fT1g � 
1).

Fig 9 : The non-cylindrical domain C = C1 [ C2 [ (fT1g � 
1).

Consider in C, the following boundary value problem

8
>>><
>>>:

@tu��u = f 2 L2 (C)

u = 0 on �

u (0; x) = 0, x 2 
1

(5.3.5)
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where � = �1 [ �2[ � with � = fT1g � (
2n
1)). The study is the same if we replace

initial condition u (0; x) = 0 by u (0; x) = u0 (x) 2 H
1
0 (
1) in (5.3.5). Recall the following

result (see [43])

Lemma 5.3.2 The Problem
8
<
:

@tu1 ��u1 = f1 2 L
2 (C1)

u1=@C1�(fT1g�
1) = 0,
(5.3.6)

admits a (unique) solution u1 2 H
1;2 (C1).

Hereafter, we denote the trace u1=fT1g�
1 by  , which is in the Sobolev spaceH
1
0 (fT1g � 
1)

because u1 2 H
1;2 (C1) (cf. [20]). Let e be the 0-extension of  to fT1g �
2, which is in

the Sobolev space H1
0 (fT1g � 
2), since 
1 � 
2.

Now, let u2 2 H
1;2 (C2) be the solution (see [43]) of the following problem in C2

8
>>><
>>>:

@tu2 ��u2 = f2 2 L
2 (C2)

u2=fT1g�
2 =
e ,

u2 = 0 on �2.

(5.3.7)

The solution u of Problem (5.3.5) will be de�ned by

u =

8
<
:

u1 in C1;

u2 in C2.

It is no di¢cult to prove that u 2 H1;2 (C) : So, the regularity of the solution of Problem

(5.3.5) is optimal in this kind of non-cylindrical domain.
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The case where 
2  
1

Here C = C1 [ C2 [ (fT1g � 
2).

Fig 10 : The non-cylindrical domain C = C1 [ C2 [ (fT1g � 
2) :

Consider in C, the following boundary value problem
8
>>><
>>>:

@tv ��v = f 2 L2 (C)

v = 0 on �1 [ �2

v (0; x) = 0, x 2 
1

(5.3.8)

It is well known (see Lemma 5.3.2) that Problem (5.3.8) in C1 admits a unique solution

v1 2 H1;2 (C1). Hereafter, we denote the trace v1=fT1g�
1 by ', which is in the Sobolev

space H1
0 (fT1g � 
1). So, v1=fT1g�
2 2 H

r (fT1g � 
2) = Hr
0 (fT1g � 
2) for 0 � r < 1

2
.

Now, consider the following problem in C28
>>><
>>>:

@tv2 ��v2 = f2 2 L
2 (C2)

v2=fT1g�
2 = ',

v2 = 0 on �2.

(5.3.9)
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Thanks to Theorem 5.3.1 we have

Lemma 5.3.3 Problem (5.3.9) admits a unique solution u2 2 H
(1+r)=2;1+r (C2).

The main result of this section follows from Lemma 5.3.2, Lemma 5.3.3 and Theorem

5.2.3, that is,

Theorem 5.3.2 For each f 2 L2 (C), the (unique) solution u of Problem (5.3.8) is such

that

1) u=C1 2 H
1;2 (C1).

2) u=C2 2 H
(1+r)=2;1+r (C2) if and only if r < 1=2,

or equivalently,

u=C2 2 H
r;2r (C2) if and only if r < 3=4.

Remark 5.3.2 The result of Theorem 5.3.2 is valid if C1, C2 are cylinders of Rn (n > 3).

Remark 5.3.3 Using similar arguments in the case where 
1 \ 
2 6= ?, with 
1 " 
2

and 
2 " 
1, we can obtain a result similar to Theorem 5.3.2.
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