
CHAPTER

4 Parabolic equations with

Robin type boundary

conditions in a

non-rectangular domain

Abstract. We are concerned in this work, with the parabolic equation

@tu� c2 (t) @2xu = f 2 L2 (
)

subject to Robin type boundary conditions and set in the non-rectangular domain


 =
�
(t; x) 2 R2 : 0 < t < T ;'1 (t) < x < '2 (t)

	
.

Our aim is to �nd some conditions on coe¢cient c and functions ('i)i=1;2 such that the

solution of this equation belongs to the anisotropic Sobolev space

H1;2 (
) =
�
u 2 L2 (
) : @tu; @xu; @

2
xu 2 L

2 (
)
	
.

Key words. Parabolic equations, non-rectangular domains, Robin condition, anisotropic

Sobolev spaces.

59



4.1. Introduction

4.1 Introduction

Let 
 be an open set of R2 de�ned by


 =
�
(t; x) 2 R2 : 0 < t < T; '1 (t) < x < '2 (t)

	

where T is a �nite positive number, while '1 and '2 are continuous real-valued functions

de�ned on [0; T ], Lipschitz continuous on ]0; T ], and such that

'1 (t) < '2 (t)

for t 2 ]0; T ]. The lateral boundary of 
 is de�ned by

�i =
�
(t; 'i (t)) 2 R

2 : 0 < t < T
	
, i = 1, 2.

Set

'2 � '1 = '.

We will then assume that

' (0) = 0, (4.1.1)

'0i (t)' (t) ! 0 as t! 0, i = 1, 2. (4.1.2)

In 
, we consider the boundary value problem
8
>>><
>>>:

@tu� c2 (t) @2xu = f 2 L2 (
)

bi (t) @xu+ ai (t) u=�i = 0, i = 1, 2,

(4.1.3)

where coe¢cients ai (t) and bi (t) are such that

(ai (t) ; bi (t)) 6= (0; 0) , i = 1,2, (4.1.4)

for every t 2 ]0; T [, which correspond to Robin type boundary conditions.

The case

ai (t) 6= 0 and bi (t) = 0, i = 1,2,

for every t 2 ]0; T [, corresponds to Dirichlet boundary conditions. We can �nd in [31],

[32], [61] and [62] solvability results of this kind of problems. In Sadallah [62], the same
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4.1. Introduction

equation is studied by another approach making use of the so-called Schur�s Lemma

and gives the same result obtained in [61] by the a priori estimates technique. In [31]

and [32], the authors deal with the heat equation (i.e., the case where c (t) = 1) set

in a non-rectangular domain with a right-hand side taken in Lp; where p 2 ]1;1[, and

have obtained optimal regularity results by the operators sum method. These results are

generalized in [33] to a parabolic equation of the type

@tu (t; x)� @2xu (t; x) + �m (t; x) u (t; x) = f (t; x)

where � is a positive spectral parameter and m (:) some positive weight functions. Reg-

ularity results of the heat equation solution in two-space dimensionnal case are obtained

in [26] by using the domain decomposition method.

The case

ai (t) = 0 and bi (t) 6= 0, i = 1,2,

for every t 2 ]0; T [, corresponds to Neumann type boundary conditions. Hofmann and

Lewis [22] have also considered the classical heat equation with Neumann boundary con-

dition in non-cylindrical domains satisfying some conditions of Lipschitz�s type. The

authors showed that the optimal Lp regularity holds for p = 2 and the situation gets

progressively worse as p approaches 1:

The two boundary conditions on each lateral boundary �i, i = 1, 2 of 
 may be of

di¤erent type. We can �nd in [64] an abstract study for parabolic problems with mixed

(Dirichlet-Neumann) lateral boundary conditions in the Hilbertian case. The author

obtains some regularity results under assumption on the geometrical behavior of the

boundary which cannot include our triangular domain.

Thanks to (4.1.4), Problem (4.1.3) may be written in the form

8
>>><
>>>:

@tu� c2 (t) @2xu = f 2 L2 (
)

@xu+ �i (t) u=�i = 0, i = 1, 2,

(4.1.5)

where

�i (t) = ai (t) =bi (t)
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4.1. Introduction

for every t 2 ]0; T [. Here, c is a bounded di¤erentiable coe¢cient depending on time such

that

0 < d1 � c (t) � d2 (4.1.6)

0 < m1 � c (t) c0 (t) � m2 (4.1.7)

for every t 2 ]0; T [, where d1, d2, m1 and m2 are constants.

The coe¢cients (�i)i=1;2 are continuous real-valued functions on ]0; T [ such that

�1 (t) < 0 and �2 (t) > 0 for all t 2 [0; T ] . (4.1.8)

We also assume that

�1c
2 is an increasing function on ]0; T [ , (4.1.9)

�2c
2 is a decreasing function on ]0; T [ , (4.1.10)

����
1 + �2 (t)

A (t)

���� � l (4.1.11)

and ����
�1 (t) (1 + �2 (t))

A (t)

���� � l, (4.1.12)

for every t 2 ]0; T [, where A (t) = �1 (t) �2 (t) + �1 (t)� �2 (t) and l is a positive constant.

Note that hypothesis (4.1.8) on (�i)i=1;2 implies that A (t) 6= 0 for every t 2 ]0; T [.

A natural assumption between coe¢cients (�i)i=1;2 and functions of parametrization

('i)i=1;2 of the domain 
 which guarantees the uniqueness of the solution of Problem

(4.1.5) is

(�1)i
�
c2 (t) �i (t)�

'0i (t)

2

�
� 0 a:e: t 2 ]0; T [ , i = 1, 2. (4.1.13)

In this work, we will prove that Problem (4.1.5) has a solution with optimal regularity,

that is a solution u belonging to the anisotropic Sobolev space

H1;2
 (
) :=

�
u 2 H1;2 (
) : @xu+ �i (t) u=�i = 0, i = 1,2

	

with

H1;2 (
) =
�
u 2 L2 (
) : @tu; @xu; @

2
xu 2 L

2 (
)
	
.
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4.2. Preliminaries

The most interesting point of the parabolic problem studied here is the fact that

' (0) = 0, which yields the domain 
 not rectangular. In this case, the domain 
 cannot

be transformed into regular domains without the appearance of some degenerate terms

in the parabolic equation (see, for example, Sadallah [58]).

The organization of this chapter is as follows. In Section 4.2, �rst we prove an unique-

ness result for Problem (4.1.5), then we derive some technical lemmas which will allow us

to prove an uniform estimate (in a sense to be de�ned later). In Section 4.3, there are two

main steps. First, we prove that Problem (4.1.5) admits a (unique) solution in the case

of a domain which can be transformed into a rectangle. Secondly, for T small enough, we

prove that the result holds true in the case of a triangular domain under the above men-

tionned assumptions on coe¢cient c and functions (�i; 'i)i=1;2. The method used here is

based on the approximation of the triangular domain by a sequence of subdomains (
n)n

which can be transformed into regular domains (rectangles) and we establish an uniform

estimate of the type

kunkH1;2(
n)
� K kfkL2(
n) ,

where un is the solution of the problem (4.1.5) in 
n and K is a constant independent of

n; which allows us to pass to the limit. Finally, in Section 4.4 we show that the obtained

local in time result can be extended to a global in time one.

4.2 Preliminaries

Proposition 4.2.1 Under assumption (4.1.13), Problem (4.1.5) is uniquely solvable.

Proof. Let us consider u 2 H1;2
 (
) a solution of the problem (4.1.5) with a null

right-hand side term. So,

@tu� c2 (t) @2xu = 0 in 
.

In addition u ful�ls the boundary conditions

@xu+ �i (t) u=�i = 0, i = 1, 2.
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4.2. Preliminaries

Using Green formula, we have

Z




(@tu� c2 (t) @2xu) u dt dx =

Z

@


�
1
2
juj2 �t � c2 (t) u @xu �x

�
d�

+

Z




c2 (t) (@xu)
2 dt dx

where �t, �x are the components of the unit outward normal vector at @
. We shall

rewrite the boundary integral making use of the boundary conditions. We obtain

Z

@


�
1
2
juj2 �t � c2 (t) u @xu �x

�
d� =

2X

i=1

Z

�i

(�1)i
�
c2 (t) �i (t)�

'0i (t)

2

�
u2 (t; 'i (t)) dt

+
1

2

Z

�3

u2dx

where �3 = f(T; x) : '1 (T ) < x < '2 (T )g. Consequently

Z




�
@tu� c2 (t) @2xu

�
u dt dx = 0

yields the inequality Z




c2: (@xu)
2 dt dx � 0,

because

2X

i=1

Z

�i

(�1)i
�
c2 (t) �i (t)�

'0i (t)

2

�
u2 (t; 'i (t)) dt+

1

2

Z

�3

u2dx � 0,

thanks to hypothesis (4.1.13). This implies that @xu = 0 and consequently @
2
xu = 0. Then,

the equation of (4.1.5) gives @tu = 0. Thus, u is constant: The boundary conditions and

the fact that �i (t) 6= 0 for all t 2 ]0; T [ imply that u = 0.

Lemma 4.2.1 We assume that �1 and �2 ful�l the conditions (4.1.8), (4.1.11) and

(4.1.12). Then, for a �xed t 2 ]0; 1[, there exists a positive constant K1 independent

of t, such that for each u 2 H2
 (0; 1)

u(j)

L2(0;1)

� K1

u(2)

L2(0;1)

, j = 0, 1,

where

H2
 (0; 1) =

�
u 2 H2 (0; 1) : u0 (0) + �1 (t) u (0) = 0, u

0 (1) + �2 (t) u (1) = 0
	
.
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4.2. Preliminaries

Proof. Let t 2 ]0; 1[ and f an arbitrary �xed element of L2 (0; 1). Every solution of

the ordinary di¤erential equation u00 = f is of the form

u (y) =

Z y

0

�Z x

0

f (s) ds

�
dx+ yu0 (0) + u (0) , y 2 [0; 1] .

The variables u (0) and u0 (0) are to be determined in a unique way such that the boundary

conditions u0 (0) + �1 (t) u (0) = 0 and u
0 (1) + �2 (t) u (1) = 0 are satis�ed.

From the preceding representation of the solution (and thus also its derivative) and

from the required Robin boundary conditions we obtain the following system to be solved:
8
><
>:
(1 + �2 (t)) u

0 (0) + �2 (t) u (0) = �

Z 1

0

f (s) ds� �2 (t)

Z 1

0

�Z x

0

f (s) ds

�
dx

u0 (0) + �1 (t) u (0) = 0

This system in the unknowns u (0) and u0 (0) is uniquely solvable if and only if

A (t) = �1 (t) �2 (t) + �1 (t)� �2 (t) 6= 0

for every t 2 ]0; T [. This condition is veri�ed thanks to (4.1.8).

Finally, the unique solution of the problem
8
>>><
>>>:

u00 = f

u0 (0) + �1 (t) u (0) = 0,

u0 (1) + �2 (t) u (1) = 0,

is given by

u (y) =

Z y

0

�Z x

0

f (s) ds

�
dx+ yu0 (0) + u (0) ,

where 8
>>><
>>>:

u (0) =

Z 1

0

f (s) ds+ �2 (t)

Z 1

0

�Z x

0

f (s) ds

�
dx

A (t)

u0 (0) = ��1 (t) u (0) .

Using the Cauchy-Schwarz inequality, we obtain the following estimates

ju (0)j � C

����
(1 + �2 (t))

A (t)

���� kfkL2(0;1)

ju0 (0)j � C

����
�1 (t) (1 + �2 (t))

A (t)

���� kfkL2(0;1) ,

which will allow us to obtain the desired estimates, thanks to the conditions (4.1.11) and

(4.1.12).
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4.2. Preliminaries

Lemma 4.2.2 Under the assumptions (4.1.8), (4.1.11) and (4.1.12) on (�i)i=1;2 and for

a �xed t 2 ]0; 1[, there exists a constant C1 (independent of a and b) such that

v(j)
2
L2(a;b)

� C1 (b� a)2(2�j)
v(2)

2
L2(a;b)

, j = 0, 1,

for each v 2 H2
 (a; b), with

H2
 (a; b) =

�
v 2 H2 (a; b) : v0 (a) +

�1 (t)

b� a
v (a) = 0, v0 (b) +

�2 (t)

b� a
v (b) = 0

�
.

Proof. It is a direct consequence of Lemma 4.2.1. Indeed, we de�ne the following

a¢ne change of variable

[0; 1] ! [a; b]

x ! (1� x) a+ xb = y

and we set

u (x) = v (y) .

Then if u 2 H2
 (0; 1), v belongs to H

2
 (a; b). We have

ku0k2L2(0;1) =

Z 1

0

(u0)2 (x) dx

=

Z b

a

(v0)2 (y) (b� a)2
dy

b� a

=

Z b

a

(v0)2 (y) (b� a) dy

= (b� a) kv0k2L2(a;b) .

On the other hand, we have

ku00k2L2(0;1) =

Z 1

0

(u00)2 (x) dx

=

Z b

a

(v00)2 (y) (b� a)3 dy

= (b� a)3 kv00k2L2(a;b) .

Using the inequality

ku0k2L2(0;1) � K2
1 ku

00k2L2(0;1)

of Lemma 4.2.1, we obtain the desired inequality

kv0k2L2(a;b) � C1 (b� a)2 kv00k2L2(a;b)
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4.3. Local in time result

with C1 = K2
1 .

The inequality

kvk2L2(a;b) � C1 (b� a)4 kv00k2L2(a;b)

can be obtained by a similar method.

4.3 Local in time result

4.3.1 Case of a domain which can be transformed into a rectan-

gle

In this subsection, we consider the case of a truncated domain 
. Let


 =
�
(t; x) 2 R2 : 0 < t < T; '1 (t) < x < '2 (t)

	

where '1 and '2 are such that

' (t) := '2 (t)� '1 (t) > 0

for all t 2 [0; T ].

Theorem 4.3.1 Under the assumptions (4.1.6), (4.1.8), (4.1.11), (4.1.12) and (4.1.13)

on the coe¢cients (�i; c)i=1;2, the problem

8
>>><
>>>:

@tu� c2 (t) @2xu = f 2 L2 (
) ,

u=t=0 = 0,

@xu+ �i (t) u=x='i(t) = 0, i = 1, 2,

(4.3.1)

admits a (unique) solution u 2 H1;2 (
).

Proof. The uniqueness of the solution is easy to check, thanks to (4.1.13). Let us

prove the existence. The change of variable

(t; x) 7! (t; y) =

�
t;
x� '1 (t)

' (t)

�
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4.3. Local in time result

transforms 
 into the rectangle R = ]0; T [� ]0; 1[. Putting u (t; x) = v (t; y) and f (t; x) =

g (t; y), then Problem (4.3.1) becomes

8
>>>>>>><
>>>>>>>:

@tv (t; y) + a (t; y) @yv (t; y)�
1

b2 (t)
@2yv (t; y) = g (t; y)

v=t=0 = 0,

@yv + ' (t) �1 (t) v=y=0 = 0,

@yv + ' (t) �2 (t) v=y=1 = 0,

(4.3.2)

where

b (t) =
' (t)

c (t)

a (t; y) = �
y'0 (t) + '01 (t)

' (t)
.

The change of variable de�ned above conserves the spaces H1;2 and L2: In other words

f 2 L2 (
), g 2 L2 (R)

u 2 H1;2 (
), v 2 H1;2 (R) .

We need the following lemma:
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4.3. Local in time result

Lemma 4.3.1 The operator

B : H1;2
 (R) ! L2 (R)

v 7! Bv = a (t; y) @yv

is compact, where for a �xed t 2 ]0; T [

H1;2
 (R) =

�
v 2 H1;2 (R) : v=�0 = 0; @yv + ' (t) �i (t) v=�i;R = 0; i = 1; 2

	
,

with �0 = f0g � ]0; 1[, �1;R = ]0; T [� f0g and �2;R = ]0; T [� f1g.

Proof. R has the "horn property" of Besov [9], so

@y : H1;2
 (R) ! H

1
2
;1 (R)

v 7! @yv

is continuous. Since R is bounded, the canonical injection is compact from H
1
2
;1 (R) into

L2 (R), see for instance [9]. Here

H
1
2
;1 (R) = L2

�
0; T ;H1 ]0; 1[

�
\H

1
2

�
0; T ;L2 ]0; 1[

�
,

see [43] for the complete de�nitions of the Hr;s Hilbertian Sobolev spaces. Then, @y is

a compact operator from H1;2
 (R) into L2 (R). Since a (:; :) is a bounded function, the

operator B = a@y is also compact from H1;2
 (R) into L2 (R).

So, it is su¢cient to show that the operator

@t �
c2

'2
@2y : H1;2

 (R) ! L2 (R)

is an isomorphism. A simple change of variable t = h (s) with h0 (s) =
'2

c2
(t), transforms

the problem 8
>>>>>>><
>>>>>>>:

@tv (t; y)�
c2

'2
(t) @2yv (t; y) = g (t; y) 2 L2 (R) ,

v=t=0 = 0,

@yv + ' (t) �1 (t) v=y=0 = 0,

@yv + ' (t) �2 (t) v=y=1 = 0,
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4.3. Local in time result

into the following 8
>>>>>><
>>>>>>:

@sw (s; y)� @2yw (s; y) = � (s; y)

w=s=h�1(0) = 0,

@yw + '�1 (h (s))w=y=0 = 0,

@yw + '�2 (h (s))w=y=1 = 0,

(4.3.3)

with � (s; y) =
g (t; y)

h0 (s)
and w (s; y) = v (t; y) : Note that this change of variable preserves

the spaces L2 and H1;2: It follows from Lions and Magenes [43], for instance, that there

exists a unique w 2 H1;2 solution of the problem (4.3.3). This implies that Problem

(4.3.1) admits a unique solution u 2 H1;2 (
). We obtain the function u by setting

u (t; x) = v (t; y) = w (h�1 (t) ; y). This ends the proof of Theorem 4.3.1.

Lemma 4.3.2 The space

W =
�
u 2 D

�
[0; T ] ;H2 (0; 1)

�
: @xu+ �i (t) u=�i = 0; i = 1; 2

	

is dense in

H1;2
 (]0; T [� ]0; 1[) =

�
u 2 H1;2 (]0; T [� ]0; 1[) : @xu+ �i (t) u=�i = 0; i = 1; 2

	

where �1 = ]0; T [� f0g and �2 = ]0; T [� f1g.

The above lemma is a particular case of [43, Vol.2, Theorem 2.1].

We shall need the following result in order to justify the calculus of the next section.

Lemma 4.3.3 The space

�
u 2 H2 (R) ; u=�0 = 0; @xu+ �i (t) u=�i = 0; i = 1; 2

	

is dense in the space

�
u 2 H1;2 (R) ; u=�0 = 0; @xu+ �i (t) u=�i = 0; i = 1; 2

	
;

where �0 = f0g � ]0; 1[ ; �1 = ]0; T [� f0g ; �2 = ]0; T [� f1g and R = ]0; T [� ]0; 1[ :

Proof. It is a consequence of [43, Vol. 1, Theorem 2.1].

Remark 4.3.1 We can replace in Lemma 4.3.3, R by 
 with the help of the change of

variable de�ned above.
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4.3. Local in time result

4.3.2 Case of a triangular domain

In this case, we de�ne 
 by


 =
�
(t; x) 2 R2 : 0 < t < T; '1 (t) < x < '2 (t)

	

where '1 and '2 are such that

' (t) := '2 (t)� '1 (t) > 0

for all t 2 ]0; T ] and

' (0) := '2 (0)� '1 (0) = 0:

For each n 2 N, we de�ne 
n by


n =
�
(t; x) 2 R2 : an < t < T; '1 (t) < x < '2 (t)

	

where (an)n is a decreasing sequence to zero. Thus, we have

' (an) > 0.

Setting fn = f=
n, where f 2 L
2 (
). We denote un 2 H

1;2 (
n) the solution of Problem

(4.3.1) in 
n 8
>>><
>>>:

@tun � c2 (t) @2xun = fn 2 L
2 (
n)

un=t=an = 0,

@xun + �i (t) un=�n;i = 0, i = 1, 2,

where

�n;i = f(t; 'i (t)) ; an < t < Tg ; i = 1; 2.

Such a solution un exists by Theorem 4.3.1.

Theorem 4.3.2 Assume that (�i; c)i=1;2 ful�l the conditions (4.1.6), (4.1.7), (4.1.8),

(4.1.9), (4.1.10), (4.1.11), (4.1.12) and (4.1.13). Then, there exists a constant K > 0

independent of n such that

kunk
2
H1;2(
n)

� K kfnk
2
L2(
n)

� K kfk2L2(
) .
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In order to prove Theorem 4.3.2, we need some preliminary results.

Lemma 4.3.4 For every � > 0 satisfying ' (t) � �, there exists a constant C > 0 inde-

pendent of n; such that

@jxun
2
L2(
n)

� C�2(2�j)
@2xun

2
L2(
n)

, j = 0, 1.

Proof. Replacing in Lemma 4.2.2 v by un and ]a; b[ by ]'1 (t) ; '2 (t)[, for a �xed t,

we obtain Z '2(t)

'1(t)

(@jxun)
2
dx � C' (t)2(2�j)

Z '2(t)

'1(t)

(@2xun)
2
dx

� C�2(2�j)
Z '2(t)

'1(t)

(@2xun)
2
dx

where C is the constant of Lemma 4.2.2. Integrating with respect to t, we obtain the

desired estimates.

Proposition 4.3.1 There exists a constant C > 0 independent of n such that

k@tunk
2
L2(
n)

+
@2xun

2
L2(
n)

� C kfk2L2(
) :

Then, Theorem 4.3.2 is a direct consequence of Lemma 4.3.4 and Proposition 4.3.1,

since � is independent of n:

Proof. In order to prove Proposition 4.3.1, we develop the inner product in L2 (
n)

kfnk
2
L2(
n)

= h@tun � c2@2xun; @tun � c2@2xuni

= k@tunk
2
L2(
n)

+ kc2:@2xunk
2
L2(
n)

� 2 h@tun; c
2@2xuni :

Calculating the last term of the previous relation, we obtain

h@tun; c
2@2xuni =

Z


n

@tun:c
2@2xun dt dx

= �

Z


n

c2@x@tun:@xun dt dx+

Z

@
n

c2@tun:@xun�x d�:
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4.3. Local in time result

So,

�2 h@tun; c
2@2xuni =

Z


n

c2@t (@xun)
2 dt dx� 2

Z

@
n

c2@tun:@xun�x d�

= �

Z


n

2cc0 (@xun)
2 dt dx+

Z

@
n

c2 (@xun)
2 �t d�

�2

Z

@
n

c2@tun:@xun�x d�

=

Z

@
n

c2
�
(@xun)

2 �t � 2@tun:@xun�x
�
d�

�

Z


n

2cc0 (@xun)
2 dt dx

with �t; �x are the components of the outward normal vector at the boundary of 
n: We

shall rewrite the boundary integral making use of the boundary conditions. On the part

of the boundary of 
n where t = an; we have un = 0 and consequently @xun = 0: The

corresponding boundary integral vanishes. On the part of the boundary of 
n where

t = T; we have �x = 0 and �t = 1: Accordingly the corresponding boundary integral

A =

Z '2(T )

'1(T )

c2 (@xun)
2 dx

is nonnegative. On the parts of the boundary where x = 'i (t) ; i = 1; 2; we have

�x =
(�1)iq

1 + ('0i)
2 (t)

; �t =
(�1)i+1 '0i (t)q
1 + ('0i)

2 (t)
and

@xun (t; 'i (t)) + �i (t) un (t; 'i (t)) = 0; i = 1; 2:

Consequently the corresponding integral is
Z T

an

c2'01 (t) [@xun (t; '1 (t))]
2 dt� 2

Z T

an

�
�1c

2
�
(t) @tun (t; '1 (t)) :un (t; '1 (t)) dt

�

Z T

an

c2'02 (t) [@xun (t; '2 (t))]
2 dt+ 2

Z T

an

�
�2c

2
�
(t) @tun (t; '2 (t)) :un (t; '2 (t)) dt:

By setting

In;k = (�1)
k+1

Z T

an

c2'0k (t) [@xun (t; 'k (t))]
2 dt; k = 1; 2;

Jn;k = (�1)
k 2

Z T

an

�
�kc

2
�
(t) @tun (t; 'k (t)) :un (t; 'k (t)) dt; k = 1; 2;

we have

�2


@tun; c

2@2xun
�
� � jIn;1j � jIn;2j � jJn;1j � jJn;2j �

Z


n

2cc0 (@xun)
2 dtdx: (4.3.4)

1) Estimation of In;k; k = 1; 2
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Lemma 4.3.5 There exists a constant K > 0 independent of n such that

jIn;kj � K� k@2xunk
2
L2(
n)

; k = 1; 2:

Proof. We convert the boundary integral In;1 into a surface integral by setting

[@xun (t; '1 (t))]
2 = �

'2 (t)� x

'2 (t)� '1 (t)
[@xun (t; x)]

2

����
x='2(t)

x='1(t)

= �

Z '2(t)

'1(t)

@

@x

�
'2 (t)� x

' (t)
[@xun (t; x)]

2

�
dx

= �2

Z '2(t)

'1(t)

'2 (t)� x

' (t)
@xun (t; x) @

2
xun (t; x) dx

+

Z '2(t)

'1(t)

1

' (t)
[@xun (t; x)]

2 dx.

Then, we have

In;1 =

Z T

an

c2 (t)'01 (t) [@xun (t; '1 (t))]
2 dt

=

Z


n

c2 (t)
'01 (t)

' (t)
(@xun)

2 dt dx

�2

Z


n

c2 (t)
'2 (t)� x

' (t)
'01 (t) (@xun) (@

2
xun) dt dx:

Thanks to Lemma 4.3.4, we can write

Z '2(t)

'1(t)

[@xun (t; x)]
2 dx � C' (t)2

Z '2(t)

'1(t)

[@2xun (t; x)]
2
dx:

Therefore

Z '2(t)

'1(t)

[@xun (t; x)]
2 j'

0

1j

'
dx � C j'01j'

Z '2(t)

'1(t)

[@2xun (t; x)]
2
dx;

consequently

jIn;1j � C

Z


n

c2 (t) j'01j' (@
2
xun)

2
dt dx

+2

Z


n

c2 (t) j'01j j@xunj j@
2
xunj dtdx;

since

����
'2 (t)� x

' (t)

���� � 1. So, for all � > 0, we have

jIn;1j � C

Z


n

c2 (t) j'01j' (@
2
xun)

2
dt dx

+

Z


n

� c2 (t) (@2xun)
2
dt dx+

1

�

Z


n

c2 (t) ('01)
2 (@xun)

2 dt dx:
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Lemma 4.3.4 yields

1

�

Z


n

c2 (t) ('01)
2 (@xun)

2 dtdx � C
1

�

Z


n

c2 (t) ('01)
2 '2 (@2xun)

2
dt dx:

Thus, there exists a constant M > 0 independent of n such that

jIn;1j � C

Z


n

c2 (t)

�
j'01j j'j+

1

�
('01)

2 j'j2
�
(@2xun)

2
dt dx

+

Z


n

c2 (t) � (@2xun)
2
dt dx

� M �

Z


n

(@2xun)
2
dt dx,

since j'01'j � � and c2 (t) is bounded: The inequality

jIn;2j � K� k@2xunk
2
L2(
n)

can be proved by a similar argument.

2) Estimation of Jn;k; k = 1; 2. We have

Jn;1 = �2

Z T

an

(�1c
2) (t) @tun (t; '1 (t)) :un (t; '1 (t)) dt

= �

Z T

an

(�1c
2) (t) [@tu

2
n (t; '1 (t))] dt:

By setting

h (t) = u2n (t; '1 (t)) ,

we obtain

Jn;1 = �

Z T

an

�1c
2: [h0 (t)� '01 (t) @xu

2
n (t; '1 (t))] dt

= ��1c
2:h (t)]

T
an
+

Z T

an

(�1c
2)
0
:h (t) dt+

Z T

an

�1c
2:'01 (t) @xu

2
n (t; '1 (t)) dt:

Thanks to (4.1.8), (4.1.9) and the fact that u2n (an; '1 (an)) = 0, we have

��1c
2:h (t)

�T
an
+

Z T

an

�
�1c

2
�0
:h (t) dt � 0.

The last boundary integral in the expression of Jn;1 can be treated by a similar argument

used in Lemma 4.3.5. So, we obtain the existence of a positive constant K independent

of n, such that
����
Z T

an

�1c
2:'01 (t) @xu

2
n (t; '1 (t)) dt

���� � K�
@2xun

2
L2(
n)

: (4.3.5)

75



4.3. Local in time result

By a similar method, we obtain

Jn;2 = �2 (t) c
2 (t) u2n (t; '2 (t))]

T
an
�

Z T

an

(�2c
2)
0
:u2n (t; '2 (t)) dt

�

Z T

an

�2c
2:'02 (t) @xu

2
n (t; '2 (t)) dt:

Thanks to (4.1.8), (4.1.10) and the fact that u2n (an; '2 (an)) = 0, we have

�2 (t) c
2 (t) u2n (t; '2 (t))

�T
an
�

Z T

an

�
�2c

2
�0
:u2n (t; '2 (t)) dt � 0.

Then �����
Z T

an

�2c
2:'02 (t) @xu

2
n (t; '2 (t)) dt

���� � K�
@2xun

2
L2(
n)

(4.3.6)

where K is a positive constant independent of n.

Now, we can complete the proof of Proposition 4.3.1. Summing up the estimates

(4.1.7), (4.3.4), (4.3.5) and (4.3.6), and making use of Lemma 4.3.4, we then obtain

kfnk
2
L2(
n)

� k@tunk
2
L2(
n)

+ kc2@2xunk
2
L2(
n)

�K2 k@
2
xunk

2
L2(
n)

�K� k@2xunk
2
L2(
n)

� k@tunk
2
L2(
n)

+ (d21 �K��K2) k@
2
xunk

2
L2(
n)

where K2 is a positive number such that 2 jcc
0j � K2: Then, it is su¢cient to choose �

such that (d21 �K��K2) > 0, to get a constant K0 > 0 independent of n such that

kfnk
2
L2(
n)

� K0

�
k@tunk

2
L2(
n)

+
@2xun

2
L2(
n)

�
.

But

kfnkL2(
n) � kfkL2(
) ,

then, there exists a constant C > 0, independent of n satisfying

k@tunk
2
L2(
n)

+
@2xun

2
L2(
n)

� C kfnk
2
L2(
n)

� C kfk2L2(
) .

This ends the proof of Proposition 4.3.1.
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Passage to the limit We are now in position to prove the main result of this work.

Theorem 4.3.3 Assume that the following conditions are satis�ed

(1) ('i)i=1;2 ful�l the assumptions (4.1.1) and (4.1.2).

(2) the coe¢cient c veri�es the conditions (4.1.6) and (4.1.7).

(3) (�i)i=1;2 ful�l the conditions (4.1.8), (4.1.11) and (4.1.12).

(4) ('i; �i; c)i=1;2 ful�l the conditions (4.1.13), (4.1.9) and (4.1.10).

Then, for T small enough, Problem (4.1.5) admits a (unique) solution u belonging to

H1;2
 (
) =

n
u 2 H1;2 (
) ; (@xu+ �i (t) u)=�i = 0; i = 1; 2

o
,

where �i, i = 1, 2 are the parts of the boundary of 
 where x = 'i (t).

Proof. Choose a sequence (
n)n2N of the domains de�ned above, such that 
n � 


with (an) a decreasing sequence to 0, as n!1. Then, we have 
n ! 
, as n!1.

Consider the solution un 2 H
1;2 (
n) of the Robin boundary value problem

8
>>><
>>>:

@tun � c2 (t) @2xun = f in 
n

un=t=an = 0

@xun + �i (t) un=�n;i = 0, i = 1, 2,

where �n;i are the parts of the boundary of 
n where x = 'i (t), i = 1, 2. Such a solution

un exists by Theorem 4.3.1. Let fun the 0�extension of un to 
. In virtue of Theorem
4.3.2, we know that there exists a constant K > 0 such that

kfunk2L2(
) +
g@tun


2

L2(
)
+
]@xun


2

L2(
)
+
]@2xun


2

L2(
)
� K kfk2L2(
) .

This means that fun, g@tun; ]@jxun; for j = 1, 2 are bounded functions in L2 (
). So, for a
suitable increasing sequence of integers nk, k = 1, 2, ... , there exist functions

u, v and vj, j = 1, 2

in L2 (
) such that

funk * u weakly in L2 (
) , k !1

]@tunk * v weakly in L2 (
) , k !1

@̂jxunk * vj weakly in L2 (
) , k !1, j = 1, 2.
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Let then � 2 D (
). For nk large enough we have supp � � 
nk . Thus

hv; �iD0(
)�D(
) = limnk�!1

R


]@tunk :� dt dx

= limnk�!1

R

nk

@tunk :� dt dx

= limnk�!1 h@tunk ; �iD0(
nk)�D(
nk)

= � limnk�!1 hunk ; @t�iD0(
nk)�D(
nk)

= � limnk�!1

R


funk :@t� dt dx

= � limnk�!1 hfunk ; @t�iD0(
)�D(
)

= �hu; @t�iD0(
)�D(
)

= h@tu; �iD0(
)�D(
) .

Then, v = @tu in D
0 (
) and so in L2 (
). By a similar manner, we prove that

v1 = @xu and v2 = @2xu

in the sense of distributions in 
 and so in L2 (
). Finally, u 2 H1;2 (
). On the other

hand,

@tunk � c2 (t) @2xunk = fnk = f=
nk

and

]@tunk �
^c2 (t) @2xunk =

ffnk .

But

ffnk �! f in L2 (
)

and

]@tunk �
^c2 (t) @2xunk * @tu� c2 (t) @2xu.

So, we have

@tu� c2 (t) @2xu = f in 
.

On the other hand, the solution u satis�es the boundary conditions

8
<
:

u = 0 at t = 0

@xu+ �i (t) u=�i = 0; i = 1; 2;
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since

8n 2 N; u=
n = un:

This proves the existence of solution to Problem (4.1.5).

The uniqueness of the solution is easy to check, thanks to the hypothesis (4.1.13).

4.4 Global in time result

Assume that 
 satis�es (4.1.1). In the case where T is not in the neighborhood of zero,

we set 
 = D1 [D2 [ �T1 where

D1 =
�
(t; x) 2 R2 : 0 < t < T1; '1 (t) < x < '2 (t)

	

D2 =
�
(t; x) 2 R2 : T1 < t < T; '1 (t) < x < '2 (t)

	

�T1 =
�
(T1; x) 2 R

2 : '1 (T1) < x < '2 (T1)
	

with T1 small enough.

In the sequel, f stands for an arbitrary �xed element of L2 (
) and fi = f=Di, i = 1, 2.

Theorem 4.3.3 applied to the triangular domain D1, shows that there exists a unique

solution u1 2 H
1;2 (D1) of the problem

8
>>><
>>>:

@tu1 � c2 (t) @2xu1 = f1 2 L
2 (D1)

@xu1 + �i (t) u1=�i;1 = 0, i = 1, 2,

(4.4.1)

with �i;1 are the parts of the boundary of D1 where x = 'i (t), i = 1, 2.

Lemma 4.4.1 If u 2 H1;2 (D2), then u=�T1 2 H
1 (�T1), u=x='1(t) 2 H

3
4 (�1;2) and u=x='2(t) 2

H
3
4 (�2;2), where �i;2 are the parts of the boundary of D2 where x = 'i (t), i = 1, 2.

The above lemma follows from Lemma 2.1.1 of Chapter 2 by using the transformation

(t; x) 7�! (t0; x0) = (t; ' (t) x+ '1 (t)) .

Hereafter, we denote the trace u1=�T1 by  which is in the Sobolev space H1 (�T1)

because u1 2 H
1;2 (D1) (see Lemma 4.4.1):
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Now, consider the following problem in D2

8
>>><
>>>:

@tu2 � c2 (t) @2xu2 = f2 2 L
2 (D2)

u2=�T1 =  

@xu2 + �i (t) u2=�i;2 = 0, i = 1, 2,

(4.4.2)

with �i;2 are the parts of the boundary of D2 where x = 'i (t), i = 1, 2.

We use the following result, which is a consequence of [43, Theorem 4.3, Vol. 2], to

solve Problem (4.4.2).

Proposition 4.4.1 Let Q be the rectangle ]0; T [ � ]0; 1[, f 2 L2 (Q) and  2 H1 (0).

Then, the problem 8
>>><
>>>:

@tu� c2 (t) @2xu = f in Q

u=0 =  

@xu+ �i (t) u=i = 0, i = 1, 2,

where 0 = f0g� ]0; 1[, 1 = ]0; T [�f0g and 2 = ]0; T [�f1g, admits a (unique) solution

u 2 H1;2 (Q).

Remark 4.4.1 In the application of [43, Theorem 4.3, Vol.2], we can observe that there

are no compatibility conditions to satisfy because @x is only in L
2 (0).

Thanks to the transformation

(t; x) 7�! (t; y) = (t; ' (t) x+ '1 (t)) ,

we deduce the following result.

Proposition 4.4.2 Problem (4.4.2) admits a (unique) solution u2 2 H
1;2 (D2).

So, the function u de�ned by

u =

8
<
:

u1 in D1

u2 in D2

is the (unique) solution of Problem (4.1.5) for an arbitrary T . Our second main result is

as follows.
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Theorem 4.4.1 Assume that the following conditions are satis�ed

(1) ('i)i=1;2 ful�l the assumptions (4.1.1) and (4.1.2).

(2) the coe¢cient c veri�es the conditions (4.1.6) and (4.1.7).

(3) (�i)i=1;2 ful�l the conditions (4.1.8), (4.1.11) and (4.1.12).

(4) ('i; �i; c)i=1;2 ful�l the conditions (4.1.13), (4.1.9) and (4.1.10).

Then, Problem (4.1.5) admits a (unique) solution u belonging to

H1;2
 (
) =

n
u 2 H1;2 (
) ; (@xu+ �i (t) u)=�i = 0; i = 1; 2

o
,

where �i, i = 1, 2 are the parts of the boundary of 
 where x = 'i (t).

Remark 4.4.2 Using the same method in the case where ' (T ) = 0 we can obtain a result

similar to Theorem 4.4.1.

81


