CHAPTER

Parabolic equation with
Cauchy-Dirichlet
boundary conditions in a

non-regular domain of R?

Abstract. In this work we give new results of existence, uniqueness and maximal regu-

larity of a solution to a parabolic equation set in a non-regular domain
Q={(t,z) eR*:0<t <T501(t) < w1 < pa()} x]0,0]

of R3, with Cauchy-Dirichlet boundary conditions, under some assumptions on the func-
tions (;),_; - The right hand side term of the equation is taken in L*(Q). The method
used is based on the approximation of the domain @) by a sequence of sub-domains (@)
which can be transformed into regular domains. This work is an extension of the one
space variable case studied in [58].

Key words. Parabolic equations, non-regular domains, anisotropic Sobolev spaces.

40



3.1. Introduction

3.1 Introduction
Let © be an open set of R? defined by
Q={(t,11) ER*: 0 <t < Ty (t) <1 < a(t)}

where T is a finite positive number, while ¢; and ¢, are continuous real-valued functions

defined on [0, T, Lipschitz continuous on |0, 7', and such that

p1(t) < p2(t)

for t €]0,T[. ¢y is allowed to coincide with o for ¢ = 0 and for ¢ = T'. For a fixed positive

number b, let () be the three-dimensional domain defined by
Q={(t,z) ER*:0<t <T501 (1) < w1 < pa(t)} x]0,0,

with boundary 0Q = (I" x ]0,b]) U (2 x {0})U(Q x {b}), I is the boundary of 2 (see Fig.
6).
In this work, we study the existence and the regularity of the solution of the parabolic

equation with Cauchy-Dirichlet boundary conditions

du—92u—0:u=finQ
(3.1.1)
u=0o0n0Q\I'r,

where 'z is the part of the boundary of () where t = T'. The right-hand side term f of
the equation lies in L? (Q).

In Baderko [8] we can find domains of the same kind but which can not include our
domain. In Sadallah [58] the same problem has been studied for a 2m-parabolic operator
in the case of one space variable. Further references on the analysis of parabolic problems
in non-cylindrical domains are: Savaré [64], Aref’ev and Bagirov [5], Hoffmann and Lewis
[22], Labbas, Medeghri and Sadallah [32], [33], and Alkhutov [3]. There are many other
works concerning boundary-value problems in non-smooth domains (see, for example,

Grisvard [20] and the references therein).
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3.2. Resolution of the problem in a reference domain

We are especially interested in the question of what conditions the functions (¢;),_; ,
must verify in order that Problem (3.1.1) has a solution with optimal regularity, that is a

solution u belonging to the anisotropic Sobolev space

Hy? (Q) == {u € H?(Q) : wpg-r, = 0}

with
H"?(Q) ={ue L*(Q): du, & u,d, u,0y0pu € L*(Q),j=1,2}7

An idea to solve Problem (3.1.1) consists in transforming the parabolic equation in the
non-regular domain () into a variable-coefficient equation in a regular domain. However,
in order to perform this, one must assume that ¢; (0) < ¢ (0) and ¢y (T') < 2 (T'). So,
in Section 3.2, we prove that Problem (3.1.1) admits a (unique) solution when @ could
be transformed into a regular domain by means of a regular change of variable, i.e., we
suppose that ¢ (0) < 2 (0) and ¢; (') < w2 (T'). In Section 3.3 we approximate @) by a

sequence (@, ) of such domains and we establish an uniform estimate of the type

lunlli 2,y < K1/ lz2qu,) -

where u,, is the solution of Problem (3.1.1) in @),, and K is a constant independent of n.
Finally, in Section 3.4 we take limits in (Q,, ) in order to reach the domain Q.

The main assumptions on the functions (¢;),_, , are
O () (o () — @1 (1) — 0 ast—0, i=1,2, (3.1.2)
and

Wit (o2 (t) =1 (1) — 0 ast—T, i=1.2 (3.1.3)

3.2 Resolution of the problem in a reference domain
In this section, we replace () by

Qo = {(t,xl) ER*:a<t<T—oa;p(t) <z <g02(t)} % 10,0],
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3.2. Resolution of the problem in a reference domain

with a > 0. Thus, we have

1 (@) <2 (@)
pr(T =) <o (T =),

(see Fig. 6).

Fig. 6 : The non-regular domains ) and Q.

We can find a change of variable 1) mapping (), into the parallelepiped
P, =]a,T —«a[ x]0,1[ x ]0,8[,
which leaves the variable ¢ unchanged. 1 is defined as follows:

(Ul Qa — P,

(o) — w(tane) = (ryny) = (t

1 — ¢ (t) x2>
T (t) = (B)] '
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3.2. Resolution of the problem in a reference domain

The mapping 1 transforms the parabolic equation in the domain (), into a variable-

coefficient parabolic equation in the parallelepiped P,. Indeed, the equation
ou— P2 u—Pu=f
in @), is equivalent to the following
Orv+a(r,y1) Opv—c(r) 50— v=g

in P,, where a and c are defined by

a (Ta yl) =

‘D= =)

and
g (Tv y1>y2) = f (t7x17$2) )

v (7—7 ylay2) = u(t7$17x2> .

Since the functions a, ¢ and py — 1 are bounded, it is easy to check the following
Lemma 3.2.1 u € HY?(Q,,) if and only if v € HY*(P,).

Proof. The mapping 1 is tri-Lipschitz and therefore it preserves the Sobolev spaces
HY? m
The boundary conditions on v which correspond to the boundary conditions on u are

the following
U/@P(,\FT,Q = 07

where I'r_,, is the part of the boundary of P, where t =T — «.
In the sequel, the variables (T, y1, y2) will be denoted again by (¢, x1, z2).

Theorem 3.2.1 The operator
L' =0, +ad,, — 02 — 02,
is an isomorphism from Hy? (P.) into L? (P,), with

Hy? (P,) = {u € H?(Ps) : ujop,ry_, =0} .
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3.2. Resolution of the problem in a reference domain

Consider the simplified problem

Ov—c(t)0?v—0>v=gin P,

= el Oy = 0v =9 (3.2.1)
/U/BPQ\FT,O[ - 0'

Note that g € L? (B,) if and only if f € L*(Q,).

Lemma 3.2.2 For every g € L?(P,), there exists a unique v € Hy? (P,) solution of

Problem (3.2.1).

Proof. Since the coefficient c (¢) is continuous in P,, the optimal regularity is given
by Ladyzhenskaya-Solonnikov-Ural’tseva [35]. Then in order to apply this classical result,

it is important to observe that the operator
Ly =08, —cd2 — 02,

is uniformly parabolic. Indeed L; can be written in the divergential form as

2
L=, 0, (a (1))

i,5=1
with
a1 (t) == C(t) , 19 (t) = Q921 (t) = 0, 929 (t) =1.

Let ¢ = ((1,¢2) € R?, we must prove that there exists

2
A>0: Zaij(t)CiCjZMQz-

ij=1
1 . . . "
Set A = max i 1) with d is a strictly positive constant such that

(g2 (t) — 1 () < d.

Then
S ay (8 GG =cd? 02, > %Q% e
> MG+
> Al
m
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3.2. Resolution of the problem in a reference domain

Lemma 3.2.3 The operator
B: Hy*(P,) — L*(P,)
v — Bv=a(t,x1)0v

18 compact.

Proof. P, has the "horn property" of Besov [9], so

Oy 1 HY?(P)) — H2l(P,)

v > Oy ¥

is continuous. Since P, is bounded, the canonical injection is compact from H?2'' (P,)

into L? (P,) (see for instance [9]), where
H>' (P) = L (a,T — a; H' (10,1] x ]0,0))) N H? (o, T — o3 L* (10,1[ % ]0,5])) .
For the complete definitions of the H™* Hilbertian Sobolev spaces see for instance [43].
Consider the composition

O 1 HYP(P)) — H2Y(R) — L2(P,)

v — O,V = Oy,

then 9,, is a compact operator from H,” (P,) into L?(P,). Since a(.,.) is a bounded
function, the operator ad,, is also compact from Hy” (P,) into L? (P,). =

Lemma 3.2.2 shows that the operator Ly = 0, — ¢02, — 92, is an isomorphism from
Hé’Q (P,) into L*(P,), on the other hand the operator ad,, is compact, consequently,
Ly + ad,, is a Fredholm operator from H,” (P,) into L?(P,). Thus the invertibility of
Ly + a0,, follows from its injectivity.

Let us consider v € Hy”? (P,) a solution of
O + aby,v — 2 v — 2 v =0 in P,.
We perform the inverse change of variable of ¢). Thus we set

u=1vo1.
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3.2. Resolution of the problem in a reference domain

It turns out that u € Hy? (Q,) and
du— 92 u— 02 u=0in Q..
Using Green formula, we have

/ (O — 02 u— 92 u)u dt deydzy = /aQ (2 ul® vy — O, wury, — Dy uuly, ) do

+/ (|0$1u|2 + |@x2u|2) dt dxidxs
Qa

where vy, v,,, V,, are the components of the unit outward normal vector at 9Q),. All the

boundary integrals vanish except / lu|® vy do. We have
0Qa

) w2(a) b ) p2(T—a) b )
/ |l I/tdO:/ / [ul dxld:n2~|—/ / |u|” dzydxs.
0Qa p1(a) JO p1(T—a) JO

) w2(a) b ) w2(T—) b o
/ fO |U| dxldxg + 5/ : fO |U| d!EldIQ
© a

1(a p1(T—
+/ (102, u|* + |0syul®) dt dwvide,.

[e7

Then

N

/ (@u — 8§1u — (93271) w dt deidry =

[e1

Consequently
/ (&u — @flu - 8§2u) w dt deidry =0

[e3

yields the inequality
/ (\leuf + \812u|2) dt dridzy <0,

Qa

1 [ele) rb ) 1 [e2(T=a) rb )
—/ / [ul dxldx2+—/ / |u|” dzydzy > 0.
2 p1(a) JO 2 o1 (T—a) JO

This implies that |9,,u|” + |0,,u> = 0 and consequently 02, u = §2,u = 0. Then, the

because

equation of (3.1.1) gives dyu = 0. Thus, u is constant. The boundary conditions imply
that u = 0 in (). This is the desired injectivity.

We shall need the following result in order to justify all the calculus of Section 3.3.

Lemma 3.2.4 The space

{ue H*(P.); wop,r, ., =0}
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3.2. Resolution of the problem in a reference domain

18 dense in the space

{u € HY? (P,); U/9PuTp_ g = O} )

Proof. Let I',, the part of the boundary of P, where ¢t = a. Lemma 2.1.2 of Chapter

2 shows that the space

{ue H*(P.); wop,rs_.r, =0}
is dense in the space
{U € H172 (Pa) ; U/BPQ\FT,Q\FQ == O} .

So, if

u € {u € H"*(P,); U/9PyTr_q~To = 0} )

then there exists a sequence

(un) € {u € H* (P.); ujopers_our, = 0}

such that

u, — wu weakly in H"?(P,), n — oo.

Let (e,) a sequence of C* ([a, T — ) such that

. 1
1if t>a+ —,
en (t) = nl

0 if t<a+ —.
2n

The sequence (e, u,,) belongs to
{ue H*(P.); wop,rs ., =0}.

In addition

entt, — u weakly in H“?(P,), n — oo.

Remark 3.2.1 In Lemma 3.2.4, we can replace P, by Q). with the help of the change of
variable ¢ defined above.
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3.3. An uniform estimate

3.3 An uniform estimate

Now we shall prove an uniform estimate which will allow us to take limits in «,. We

denote u,, € H"?(Q.,, ) the solution of Problem (3.1.1) corresponding to a second member

fo=f/Ga, € L?(Qa,) in
Qan = Qan X ]Oab[7

where

Qo = {(101) ER? sy <t < T =ty 01 (1) <11 < 02 (1)}

with (), a sequence decreasing to zero.
Proposition 3.3.1 There exists a constant K independent of n such that

[unllg12(Qu,) < B llfull2(gu,) < BEullfllrag) -

In order to prove Proposition 3.3.1, we need some preliminary results.

Lemma 3.3.1 Let |a, 5[ C R. There exists a constant Ko (independent of o and ) such
that

”u(j)Hi?(]a,,B[) < (8- ) K, |u 0,1,

@] =
Izgasy - 4 =
for everyu € H? (Ja, B))NHE (Jav, B]), where uV (respectively u'® ) is the first (respectively

the second) derivative of u on o, B and u® = w.

Proof. Consider the particular case where |, 5] = |0, 1] and let f an arbitrary fixed
element of L? (0,1). Then, the solution of the problem

u//:f

can be written in the form

where



3.3. An uniform estimate

By using the Cauchy-Schwarz inequality, we obtain the following estimate

2 2
lullz2g01p < K2 1f 172001
and thus
2 2
||U||L2(]o,1[) < Ko ||UH||L2(}0,1[) :

By a similar argument, we obtain

2 2
[[u'[| 72 01) = Ko [lu" |72 0,1
(Jo,1] (Jo,1])

from the following form of v’ (y)

/f dm—/ol{/ozf(s)ds}dx

The general case follows from the previous particular case ], 5[ = ]0,1] by an affine
change of variable. Indeed, we define the following affine change of variable
0,1] — [a,f]
x - l—-2)a+zf=y
and we set
u(z)=wv(y).

Then if u € H?(]0,1[) N H} (]0, 1]), v belongs to H? (Jo, B]) N HE (], B[). We have

1
. =QA<wfm>m

— ’ N2 _a2 dy
- [ erme-a 32

B
zl/(ﬂfwﬂﬁ—a)@

= (B-q) HU'Hiz(]a,@[) :

On the other hand, we have

T 4<wf@>m
B8
- /(waﬂﬁ—®3@

3 2
= (B-aq) HU"HL2(]a,5[)-
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3.3. An uniform estimate

Using the inequality
2 2
||U,||L2(0,1) < I HUHHL2(0,1)

of the previous case, we obtain the desired inequality

2 2 2
1V 72gasp < K208 —a) [V 122004 -

The inequality
2 4 2
[0 z2qasy < K208 — )" [[0"[22a.8p

can be obtained by a similar method. m

Lemma 3.3.2 For every ¢ > 0, chosen such that (ps2 (t) — 1 (t)) < €, there ezists a

constant Cy independent of n such that
0,0 g < O 2,y = 01

Proof. Replacing in Lemma 3.3.1 u by u,, and |a, 5[ by |1 (), @2 (t)], for a fixed t,
we obtain

p2(t) ) 9 2(2—5) w2(t) 2
[0 @) < K- o @2 [ )
©

1(t) w1(t)

ore2(t) 9
< Ky / (0 u,)? duy.
e1(t)

Integrating in the previous inequality with respect to ¢, then with respect to x5, we get
the desired result with C; = K5. =
Proof. of Proposition (3.3.1) Let us denote the inner product in L? (Q,,) by (.,.),

then we have
I fall 2.y = (Optn, — O3 Uy — 02 U, Oyt — O u — O3 U,

Hi%@an) + ”8:32“”“;(@%)
—2(Oyun, 02 ) — 2(0ytin, 02, Un) + 2(02 Uy, 02, Up).

2
= ||8t“n||L2(Qan) + Ha;u"

1) Estimation of —2(d,u,,d2 u,) We have

Opund? Uy = Oy (04O i) — 10, (04,u,)?
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3.3. An uniform estimate

Then

—2(8tun,8§1un) = -2 8tun(9£1undt dxidzs
Qanp,

= —2/ Opy (04, Oy, uty) dt dzyds
Q&n

+ [ 0 (Op,un)* dt duyday
Qan

= [(8$1un)2 v — 28tun8x1unuzl] do,
0Qan,

where v, v, , V,, are the components of the unit outward normal vector at 9Q),, . We shall
rewrite the boundary integral making use of the boundary conditions. On the parts of
the boundary of Q,, where t = a,,, x5 = 0 and x2 = b we have u,, = 0 and consequently
Ozt = 0. The correponding boundary integral vanishes. On the part of the boundary

where t =T — «a,, we have v,, = 0 and v, = 1. Accordingly the correponding boundary

2(T—ay,) )
/ / (O up)” dxydas
(T—an)

is nonnegative. On the part of the boundary where 1 = @; (t), i = 1,2, we have u,, = 0.

integral

Differentiating with respect to ¢ we obtain
Ostly, = — s (t) Oy U,

Consequently, the correponding boundary integral is

T—on

/ / 8z1un (ta P1 <t> 71"2)]2 dt d$2
?f—an

/ [0 R a0 2 dt o

By setting
b prT—oan
I t) [Opyun (t, 01 (1) ,x2)]2 dt dxy
b0 Tanan N
_[2 / / &clun (t (,02( ) IQ)] dt de‘Q,
0
we have
—2(Optun, 02 up) > — | L] — | L] . (3.3.1)
[ |
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3.3. An uniform estimate

Lemma 3.3.3 There exists a constant K4 independent of n such that

L] < Kye| 02 uy i=1,2.

220y

Proof. We convert the boundary integral [; into a surface integral by setting

t) o x1=<p2(t)
837 n ta t P 2 - - L 8m1 n t’ ’ ’
Oyt (t, 01 (1) 5 22)] P2 (t) — 1 (1) eyt 8,71, 2)] z1=¢1(t)

_ _/sﬂz(t)a { @2 (1) — 23 e U]Q}dxl
) Lez(®) —er(t) T

a(t) t) —
= —2/ M&“un.@ilun dxy
o) P2 (1) — o1 (1)

a(t) 1 [a ]2
+/ — [0y, u,]" day.
oy P2(t) =@ () '

Then, we have

b pT—ap
b= [ [ h® 0 e 0 o) ddo,
0 Qn
A0 :
_ —— Oy uy,)” dt dxydx
L o g o i
so [ P I 1) (0,0) (3R,) dt dyis

Qa, P2 (1) — 01 (1)
Thanks to Lemma 3.3.2, we can write

w2(t)

p2(t) ) ) 5
/ Oerual?dzy < Ko la (B) — o1 (8)] / (02, u,] dar.

1(t) ©1(t)
Therefore

w2(t)

?2(D) A 2
/ [a:clun} dxl S ](22 |S0/1| [902 - @1] / [a’%lu”} dxl’
@1(t) Y2 — L1 e1(t)

consequently
2
L] < K2/ 611 w2 — 1] (03, un)” dt dardas

22 [ 1ot 2,0 dt draies
P2 (t) — m1

S P —ry

‘ < 1. Using the inequality

2 2

1
2 |g0’1@x1un| ‘aglun‘ < € (8:%1“71) + < (‘Pll)Q (amlun)
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3.3. An uniform estimate

for all € > 0, we obtain

L] < K| &4 [es — 1) (02,u,)” dt daydas
Q&n
1

+/ € (6§1un)2 dt dridxy + —/ ()2 (D, un)? dt dayds.
€

an an

Lemma 3.3.2 yields

1 1 ,
@ @t ddes < Kot [ (@)l o (0F,) e o

an an

Thus,

1 2
L] < Kz/ [Wﬂ 2 — 1| + - (£1)* o2 — @1\2] (02, 1n)" dt da1d

n

+ € (831%)2 dt dxidzs
Qon
< (2Ky+1) e/ (821%)2 dt dxdxs,

an

since |¢] (2 — ¢1)| < €. Finally, taking K; = (2K2 + 1), we obtain

L] < K4€Ha§1u”HL2(Qan)'

The inequality

|| < K4€Ha§1u”HL2(Qan)’

can be proved by a similar method.
This ends the proof of Lemma 3.3.3.
2) Estimation of —2(d,u,, 92, u,): We have

Oun® = Oy, (O4nOiyttn) — 10, (0ryu,)? .

Then
—2(6tun,8§2un) = -2 8tun6§2undt dxydzs
Qan
= —2/ Ory (04, Opytty) dt dxydas
Qan
+ Oy (5:,;2%)2 dt dxidxs
Qan

— [(Orat1n)? v — 204100y UV, | do.
9Qan
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3.3. An uniform estimate

Using the Cauchy-Dirichlet boundary conditions, we see that the above boundary integral

is nonnegative. Consequently
—2 (Oytun, 02,y ) > 0. (3.3.2)
3) Estimation of 2(92 u,,d? u,): We have

P un.02 = Oy (001 1n.02,Un) — Oy (D Oy Oyin) + (O, Oyt .
Then

2<a§1un7 8§2un> = 2/ 6§1Una§2undt dl'ldxg

an

= 2/ Oy (Opyun.02 1) dt dayds

—2/ Oy (Opy Uy Oy Opytiyy) dt dxyds

an

12 [ (0, Opyun)? dt dayday
Qan

= 2 (84,00yun)” dt daydas
QOA

+2/ [amlunﬁgzunyml — amlun.&rl@munym} do.
0

an

Thanks to the boundary conditions, we obtain
202 tn, 02,1n) = 2[00, Onstin 720, - (3.3.3)

Then, summing up the estimates (3.3.1), (3.3.2) and (3.3.3) of the inner products, and

making use of Lemma 3.3.3, we then obtain

2 2 2 2
] = |2l 4 2102, 02t 12,
2
HatunHL2(Qan) -+ (1 — 2K4€) Haz

v

2
|
1 L2(Q(¥n)

1102, unll g, + 21100 O2suall 2, -

Then, it is sufficient to choose € such that (1 —2K,¢) > 0 to get a constant Ky > 0

independent of n such that

an||L2(Qan) Z KO ||unHH1’2(Qan) ’
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3.4. Passage to the limit

and since

1fallrzga,y < Iz

there exists a constant K; > 0, independent of n satisfying

[unll 120, < K110l 2@,y < B llflli2g) -

This completes the proof of Proposition 3.3.1. =

3.4 Passage to the limit
We are now able to prove the main result of this work

Theorem 3.4.1 We assume that p1 and o fulfil the conditions (3.1.2) and (3.1.3), then
the heat operator

L=0,—0 —0,

is an isomorphism from Hy” (Q) into L (Q).

Proof. Choose a sequence @,, n = 1,2, ... of reference domains (see Section 3.2) such
that Q,, C @ with («,) a sequence decreasing to 0, as n — co. Then we have Q,, — @,
as n — oo.

Consider the solution u,, € HY?(Q,,) of the Cauchy-Dirichlet problem

2 2 _ :
at,u’()l'n - axluan - amguan - f m Qan

Uor /0Q-T 10y, — 0,

with I'y_,, is the part of the boundary of @Q),, where t = T — «,,. Such a solution u,,,
exists by Theorem 3.2.1. Let u,, the O-extension of u,, to Q. In virtue of Proposition

3.3.1, we know that there exists a constant C' such that

2
i,j=0

1<i4j<2

—~——

atuozn

< Clfllz2g) -
12(Q)

J
x1Oza Uqy,,

[ta, I 2y + ‘ L2(Q)
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3.4. Passage to the limit

This means that u,,, 8712; , iy, for 1 < i+ j <2 are bounded functions in L? (Q).

So for a suitable increasing sequence of integers ng, k = 1,2, ..., there exist functions
u,vand v;; 1 <i+j <2
in L? (Q) such that

U, — u  weakly in L? (Q), k — oo

Do, — v weakly in L?(Q), k — oo

Oy, — v;; weakly in L?(Q), k— 0,1 <i+j<2.

Let then 6 € D (Q). For ny large enough we have supp 6 C Qay, - Thus

(010:0) Dy = lMn—oo Jo OnUa,, 0 dtdridry

= lim,, oo fQ amuan .0 dtdx,dxs
- llmnk—)oo <am1u&nk 9>DI Qan )XD<Qa7lk)

= 1lmnk4>oo <uank ) a3319>D/ QCXn )XD(Qank)
= — llmnk —00 fQ uOén '8-7:10 dtdxldl‘Q

= hmnk—m)o <u04nk 9 85519>D/ Q)XD( )
= —(4,9:,9) pi@)xD(Q)

= (001.0) pig)xnie)

Then, vy = 0puin D' (Q) and so in L?(Q). By a similar manner, we prove that

vzatu,vi]—ﬁz Fou1<i+j<2

1 X2

in the sense of distributions in @ and so in L? (Q). Finally, u € H"?(Q). On the other
hand,

2 2 _ _
atuank - amluank - 6x2uank - fnk - f/Qank

and

e~

8t“ank 82 oy, — 82 Vo, = fnk

But
fur — fin L2(Q)
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3.4. Passage to the limit

and

—_ N

2 2 . 2 2
atu%k — 02 Uq,, — 0F,Uq,, Ou — 07 v — O, u.
So, we have

oy — aglu — 8§2u = fin Q

On the hand, the solution u satisfies the boundary conditions w/5g_r, = 0 since

Vn € Nyuyg, = uq

n*

This proves the existence of a solution to Problem 3.1.1.

Notice that we have the estimate

2 2
HU”H1-2(Q) < K HfHL2(Q)a

which implies the uniqueness of the solution. m

Remark 3.4.1 The result given in Theorem 3.4.1 holds true only under the assumption
(3.1.2) (respectively, (3.1.3)), if ¢1(0) = 2(0) and @1 (T) < @2 (T) (respectively, if
1(0) < 2(0) and @1 (T) = 2 (T)).

Remark 3.4.2 Note that this work may be extended at least in the following directions:

1. The non-regular domain Q) may be replaced by a non-cylindrical domain (conical
domain, for example).

2. The function f on the right-hand side of the equation of Problem (3.1.1), may be
taken in LP (Q), where p € |1,00[. The method used here does not seem to be appropriate
for the space LP (Q) when p # 2.

3. The operator L may be replaced by a high order operator.
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