CHAPTER

Parabolic equation with

Cauchy-Dirichlet

boundary conditions in a non-regular domain of \mathbb{R}^{3}

Abstract

In this work we give new results of existence, uniqueness and maximal regularity of a solution to a parabolic equation set in a non-regular domain $$
\left.Q=\left\{\left(t, x_{1}\right) \in \mathbb{R}^{2}: 0<t<T ; \varphi_{1}(t)<x_{1}<\varphi_{2}(t)\right\} \times\right] 0, b[
$$ of \mathbb{R}^{3}, with Cauchy-Dirichlet boundary conditions, under some assumptions on the functions $\left(\varphi_{i}\right)_{i=1,2}$. The right hand side term of the equation is taken in $L^{2}(Q)$. The method used is based on the approximation of the domain Q by a sequence of sub-domains $\left(Q_{n}\right)_{n}$ which can be transformed into regular domains. This work is an extension of the one space variable case studied in [58].

Key words. Parabolic equations, non-regular domains, anisotropic Sobolev spaces.

3.1 Introduction

Let Ω be an open set of \mathbb{R}^{2} defined by

$$
\Omega=\left\{\left(t, x_{1}\right) \in \mathbb{R}^{2}: 0<t<T ; \varphi_{1}(t)<x_{1}<\varphi_{2}(t)\right\}
$$

where T is a finite positive number, while φ_{1} and φ_{2} are continuous real-valued functions defined on $[0, T]$, Lipschitz continuous on $] 0, T[$, and such that

$$
\varphi_{1}(t)<\varphi_{2}(t)
$$

for $t \in] 0, T\left[. \varphi_{1}\right.$ is allowed to coincide with φ_{2} for $t=0$ and for $t=T$. For a fixed positive number b, let Q be the three-dimensional domain defined by

$$
\left.Q=\left\{\left(t, x_{1}\right) \in \mathbb{R}^{2}: 0<t<T ; \varphi_{1}(t)<x_{1}<\varphi_{2}(t)\right\} \times\right] 0, b[,
$$

with boundary $\partial Q=(\Gamma \times] 0, b[) \cup(\Omega \times\{0\}) \cup(\Omega \times\{b\})$, Γ is the boundary of Ω (see Fig. $6)$.

In this work, we study the existence and the regularity of the solution of the parabolic equation with Cauchy-Dirichlet boundary conditions

$$
\left\{\begin{array}{l}
\partial_{t} u-\partial_{x_{1}}^{2} u-\partial_{x_{2}}^{2} u=f \text { in } Q \tag{3.1.1}\\
u=0 \text { on } \partial Q \backslash \Gamma_{T},
\end{array}\right.
$$

where Γ_{T} is the part of the boundary of Q where $t=T$. The right-hand side term f of the equation lies in $L^{2}(Q)$.

In Baderko [8] we can find domains of the same kind but which can not include our domain. In Sadallah [58] the same problem has been studied for a 2 m -parabolic operator in the case of one space variable. Further references on the analysis of parabolic problems in non-cylindrical domains are: Savaré [64], Aref'ev and Bagirov [5], Hoffmann and Lewis [22], Labbas, Medeghri and Sadallah [32], [33], and Alkhutov [3]. There are many other works concerning boundary-value problems in non-smooth domains (see, for example, Grisvard [20] and the references therein).

We are especially interested in the question of what conditions the functions $\left(\varphi_{i}\right)_{i=1,2}$ must verify in order that Problem (3.1.1) has a solution with optimal regularity, that is a solution u belonging to the anisotropic Sobolev space

$$
H_{0}^{1,2}(Q):=\left\{u \in H^{1,2}(Q): u_{/ \partial Q \backslash \Gamma_{T}}=0\right\}
$$

with

$$
H^{1,2}(Q)=\left\{u \in L^{2}(Q): \partial_{t} u, \partial_{x_{1}}^{j} u, \partial_{x_{2}}^{j} u, \partial_{x_{1}} \partial_{x_{2}} u \in L^{2}(Q), j=1,2\right\} ?
$$

An idea to solve Problem (3.1.1) consists in transforming the parabolic equation in the non-regular domain Q into a variable-coefficient equation in a regular domain. However, in order to perform this, one must assume that $\varphi_{1}(0)<\varphi_{2}(0)$ and $\varphi_{1}(T)<\varphi_{2}(T)$. So, in Section 3.2, we prove that Problem (3.1.1) admits a (unique) solution when Q could be transformed into a regular domain by means of a regular change of variable, i.e., we suppose that $\varphi_{1}(0)<\varphi_{2}(0)$ and $\varphi_{1}(T)<\varphi_{2}(T)$. In Section 3.3 we approximate Q by a sequence $\left(Q_{\alpha_{n}}\right)$ of such domains and we establish an uniform estimate of the type

$$
\left\|u_{n}\right\|_{H^{1,2}\left(Q_{\alpha_{n}}\right)} \leq K\|f\|_{L^{2}\left(Q_{\alpha_{n}}\right)},
$$

where u_{n} is the solution of Problem (3.1.1) in $Q_{\alpha_{n}}$ and K is a constant independent of n. Finally, in Section 3.4 we take limits in $\left(Q_{\alpha_{n}}\right)$ in order to reach the domain Q.

The main assumptions on the functions $\left(\varphi_{i}\right)_{i=1,2}$ are

$$
\begin{equation*}
\varphi_{i}^{\prime}(t)\left(\varphi_{2}(t)-\varphi_{1}(t)\right) \longrightarrow 0 \quad \text { as } t \longrightarrow 0, \quad i=1,2, \tag{3.1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{i}^{\prime}(t)\left(\varphi_{2}(t)-\varphi_{1}(t)\right) \longrightarrow 0 \quad \text { as } t \longrightarrow T, \quad i=1,2 . \tag{3.1.3}
\end{equation*}
$$

3.2 Resolution of the problem in a reference domain

In this section, we replace Q by

$$
\left.Q_{\alpha}=\left\{\left(t, x_{1}\right) \in \mathbb{R}^{2}: \alpha<t<T-\alpha ; \varphi_{1}(t)<x_{1}<\varphi_{2}(t)\right\} \times\right] 0, b[,
$$

with $\alpha>0$. Thus, we have

$$
\left\{\begin{array}{l}
\varphi_{1}(\alpha)<\varphi_{2}(\alpha) \\
\varphi_{1}(T-\alpha)<\varphi_{2}(T-\alpha)
\end{array}\right.
$$

(see Fig. 6).

Fig. 6 : The non-regular domains Q and Q_{α}.

We can find a change of variable ψ mapping Q_{α} into the parallelepiped

$$
\left.P_{\alpha}=\right] \alpha, T-\alpha[\times] 0,1[\times] 0, b[,
$$

which leaves the variable t unchanged. ψ is defined as follows:

$$
\begin{aligned}
\psi: Q_{\alpha} & \longrightarrow P_{\alpha} \\
\left(t, x_{1}, x_{2}\right) & \longmapsto \psi\left(t, x_{1}, x_{2}\right)=\left(\tau, y_{1}, y_{2}\right)=\left(t, \frac{x_{1}-\varphi_{1}(t)}{\varphi_{2}(t)-\varphi_{1}(t)}, x_{2}\right) .
\end{aligned}
$$

The mapping ψ transforms the parabolic equation in the domain Q_{α} into a variablecoefficient parabolic equation in the parallelepiped P_{α}. Indeed, the equation

$$
\partial_{t} u-\partial_{x_{1}}^{2} u-\partial_{x_{2}}^{2} u=f
$$

in Q_{α} is equivalent to the following

$$
\partial_{\tau} v+a\left(\tau, y_{1}\right) \partial_{y_{1}} v-c(\tau) \partial_{y_{1}}^{2} v-\partial_{y_{2}}^{2} v=g
$$

in P_{α}, where a and c are defined by

$$
\begin{aligned}
& a\left(\tau, y_{1}\right)=\frac{\left(\varphi_{1}^{\prime}(\tau)-\varphi_{2}^{\prime}(\tau)\right) y_{1}-\varphi_{1}^{\prime}(\tau)}{\varphi_{2}(\tau)-\varphi_{1}(\tau)}, \\
& c(\tau)=\frac{1}{\left(\varphi_{2}(\tau)-\varphi_{1}(\tau)\right)^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& g\left(\tau, y_{1}, y_{2}\right)=f\left(t, x_{1}, x_{2}\right), \\
& v\left(\tau, y_{1}, y_{2}\right)=u\left(t, x_{1}, x_{2}\right) .
\end{aligned}
$$

Since the functions a, c and $\varphi_{2}-\varphi_{1}$ are bounded, it is easy to check the following

Lemma 3.2.1 $u \in H^{1,2}\left(Q_{\alpha}\right)$ if and only if $v \in H^{1,2}\left(P_{\alpha}\right)$.

Proof. The mapping ψ is tri-Lipschitz and therefore it preserves the Sobolev spaces $H^{1,2}$.

The boundary conditions on v which correspond to the boundary conditions on u are the following

$$
v_{/ \partial P_{\alpha} \backslash \Gamma_{T-\alpha}}=0,
$$

where $\Gamma_{T-\alpha}$ is the part of the boundary of P_{α} where $t=T-\alpha$.
In the sequel, the variables $\left(\tau, y_{1}, y_{2}\right)$ will be denoted again by $\left(t, x_{1}, x_{2}\right)$.
Theorem 3.2.1 The operator

$$
L^{\prime}=\partial_{t}+a \partial_{x_{1}}-c \partial_{x_{1}}^{2}-\partial_{x_{2}}^{2}
$$

is an isomorphism from $H_{0}^{1,2}\left(P_{\alpha}\right)$ into $L^{2}\left(P_{\alpha}\right)$, with

$$
H_{0}^{1,2}\left(P_{\alpha}\right)=\left\{u \in H^{1,2}\left(P_{\alpha}\right): u_{/ \partial P_{\alpha} \backslash \Gamma_{T-\alpha}}=0\right\} .
$$

Consider the simplified problem

$$
\left\{\begin{array}{l}
\partial_{t} v-c(t) \partial_{x_{1}}^{2} v-\partial_{x_{2}}^{2} v=g \text { in } P_{\alpha} \tag{3.2.1}\\
v_{/ \partial P_{\alpha} \backslash \Gamma_{T-\alpha}}=0 .
\end{array}\right.
$$

Note that $g \in L^{2}\left(P_{\alpha}\right)$ if and only if $f \in L^{2}\left(Q_{\alpha}\right)$.
Lemma 3.2.2 For every $g \in L^{2}\left(P_{\alpha}\right)$, there exists a unique $v \in H_{0}^{1,2}\left(P_{\alpha}\right)$ solution of Problem (3.2.1).

Proof. Since the coefficient $c(t)$ is continuous in $\overline{P_{\alpha}}$, the optimal regularity is given by Ladyzhenskaya-Solonnikov-Ural'tseva [35]. Then in order to apply this classical result, it is important to observe that the operator

$$
L_{1}=\partial_{t}-c \partial_{x_{1}}^{2}-\partial_{x_{2}}^{2}
$$

is uniformly parabolic. Indeed L_{1} can be written in the divergential form as

$$
L_{1}=\partial_{t}-\sum_{i, j=1}^{2} \partial_{x_{i}}\left(a_{i j}(t) \partial_{x_{j}}\right)
$$

with

$$
a_{11}(t)=c(t), a_{12}(t)=a_{21}(t)=0, a_{22}(t)=1
$$

Let $\zeta=\left(\zeta_{1}, \zeta_{2}\right) \in \mathbb{R}^{2}$, we must prove that there exists

$$
\lambda>0: \sum_{i, j=1}^{2} a_{i j}(t) \zeta_{i} \zeta_{j} \geq \lambda|\zeta|^{2}
$$

Set $\lambda=\max \left(\frac{1}{d}, 1\right)$ with d is a strictly positive constant such that

$$
\left(\varphi_{2}(t)-\varphi_{1}(t)\right) \leq d
$$

Then

$$
\begin{aligned}
\sum_{i, j=1}^{2} a_{i j}(t) \zeta_{i} \zeta_{j}=c \partial_{x_{1}}^{2}-\partial_{x_{2}}^{2} & \geq \frac{1}{d^{2}} \zeta_{1}^{2}+\zeta_{2}^{2} \\
& \geq \lambda\left[\zeta_{1}^{2}+\zeta_{2}^{2}\right] \\
& \geq \lambda|\zeta|^{2}
\end{aligned}
$$

Lemma 3.2.3 The operator

$$
\begin{aligned}
B: H_{0}^{1,2}\left(P_{\alpha}\right) & \longrightarrow L^{2}\left(P_{\alpha}\right) \\
v & \longmapsto B v=a\left(t, x_{1}\right) \partial_{x_{1}} v
\end{aligned}
$$

is compact.

Proof. P_{α} has the "horn property" of Besov [9], so

$$
\begin{aligned}
\partial_{x_{1}}: H_{0}^{1,2}\left(P_{\alpha}\right) & \longrightarrow H^{\frac{1}{2}, 1}\left(P_{\alpha}\right) \\
v & \longmapsto \partial_{x_{1}} v
\end{aligned}
$$

is continuous. Since P_{α} is bounded, the canonical injection is compact from $H^{\frac{1}{2}, 1}\left(P_{\alpha}\right)$ into $L^{2}\left(P_{\alpha}\right)$ (see for instance [9]), where

$$
H^{\frac{1}{2}, 1}\left(P_{\alpha}\right)=L^{2}\left(\alpha, T-\alpha ; H^{1}(] 0,1[\times] 0, b[)\right) \cap H^{\frac{1}{2}}\left(\alpha, T-\alpha ; L^{2}(] 0,1[\times] 0, b[)\right) .
$$

For the complete definitions of the $H^{r, s}$ Hilbertian Sobolev spaces see for instance [43].
Consider the composition

$$
\begin{aligned}
\partial_{x_{1}}: H_{0}^{1,2}\left(P_{\alpha}\right) & \rightarrow H^{\frac{1}{2}, 1}\left(P_{\alpha}\right)
\end{aligned} \rightarrow L^{2}\left(P_{\alpha}\right)
$$

then $\partial_{x_{1}}$ is a compact operator from $H_{0}^{1,2}\left(P_{\alpha}\right)$ into $L^{2}\left(P_{\alpha}\right)$. Since $a(.,$.$) is a bounded$ function, the operator $a \partial_{x_{1}}$ is also compact from $H_{0}^{1,2}\left(P_{\alpha}\right)$ into $L^{2}\left(P_{\alpha}\right)$.

Lemma 3.2.2 shows that the operator $L_{1}=\partial_{t}-c \partial_{x_{1}}^{2}-\partial_{x_{2}}^{2}$ is an isomorphism from $H_{0}^{1,2}\left(P_{\alpha}\right)$ into $L^{2}\left(P_{\alpha}\right)$, on the other hand the operator $a \partial_{x_{1}}$ is compact, consequently, $L_{1}+a \partial_{x_{1}}$ is a Fredholm operator from $H_{0}^{1,2}\left(P_{\alpha}\right)$ into $L^{2}\left(P_{\alpha}\right)$. Thus the invertibility of $L_{1}+a \partial_{x_{1}}$ follows from its injectivity.

Let us consider $v \in H_{0}^{1,2}\left(P_{\alpha}\right)$ a solution of

$$
\partial_{t} v+a \partial_{x_{1}} v-c \partial_{x_{1}}^{2} v-\partial_{x_{2}}^{2} v=0 \text { in } P_{\alpha} .
$$

We perform the inverse change of variable of ψ. Thus we set

$$
u=v \circ \psi .
$$

It turns out that $u \in H_{0}^{1,2}\left(Q_{\alpha}\right)$ and

$$
\partial_{t} u-\partial_{x_{1}}^{2} u-\partial_{x_{2}}^{2} u=0 \text { in } Q_{\alpha} .
$$

Using Green formula, we have

$$
\begin{aligned}
\int_{Q_{\alpha}}\left(\partial_{t} u-\partial_{x_{1}}^{2} u-\partial_{x_{2}}^{2} u\right) u d t d x_{1} d x_{2}= & \int_{\partial Q_{\alpha}}\left(\frac{1}{2}|u|^{2} \nu_{t}-\partial_{x_{1}} u \cdot u \nu_{x_{1}}-\partial_{x_{2}} u \cdot u \nu_{x_{2}}\right) d \sigma \\
& +\int_{Q_{\alpha}}\left(\left|\partial_{x_{1}} u\right|^{2}+\left|\partial_{x_{2}} u\right|^{2}\right) d t d x_{1} d x_{2}
\end{aligned}
$$

where $\nu_{t}, \nu_{x_{1}}, \nu_{x_{2}}$ are the components of the unit outward normal vector at ∂Q_{α}. All the boundary integrals vanish except $\int_{\partial Q_{\alpha}}|u|^{2} \nu_{t} d \sigma$. We have

$$
\int_{\partial Q_{\alpha}}|u|^{2} \nu_{t} d \sigma=\int_{\varphi_{1}(\alpha)}^{\varphi_{2}(\alpha)} \int_{0}^{b}|u|^{2} d x_{1} d x_{2}+\int_{\varphi_{1}(T-\alpha)}^{\varphi_{2}(T-\alpha)} \int_{0}^{b}|u|^{2} d x_{1} d x_{2}
$$

Then

$$
\begin{aligned}
\int_{Q_{\alpha}}\left(\partial_{t} u-\partial_{x_{1}}^{2} u-\partial_{x_{2}}^{2} u\right) u d t d x_{1} d x_{2}= & \frac{1}{2} \int_{\varphi_{1}(\alpha)}^{\varphi_{2}(\alpha)} \int_{0}^{b}|u|^{2} d x_{1} d x_{2}+\frac{1}{2} \int_{\varphi_{1}(T-\alpha)}^{\varphi_{2}(T-\alpha)} \int_{0}^{b}|u|^{2} d x_{1} d x_{2} \\
& +\int_{Q_{\alpha}}\left(\left|\partial_{x_{1}} u\right|^{2}+\left|\partial_{x_{2}} u\right|^{2}\right) d t d x_{1} d x_{2}
\end{aligned}
$$

Consequently

$$
\int_{Q_{\alpha}}\left(\partial_{t} u-\partial_{x_{1}}^{2} u-\partial_{x_{2}}^{2} u\right) u d t d x_{1} d x_{2}=0
$$

yields the inequality

$$
\int_{Q_{\alpha}}\left(\left|\partial_{x_{1}} u\right|^{2}+\left|\partial_{x_{2}} u\right|^{2}\right) d t d x_{1} d x_{2} \leq 0
$$

because

$$
\frac{1}{2} \int_{\varphi_{1}(\alpha)}^{\varphi_{2}(\alpha)} \int_{0}^{b}|u|^{2} d x_{1} d x_{2}+\frac{1}{2} \int_{\varphi_{1}(T-\alpha)}^{\varphi_{2}(T-\alpha)} \int_{0}^{b}|u|^{2} d x_{1} d x_{2} \geq 0
$$

This implies that $\left|\partial_{x_{1}} u\right|^{2}+\left|\partial_{x_{2}} u\right|^{2}=0$ and consequently $\partial_{x_{1}}^{2} u=\partial_{x_{2}}^{2} u=0$. Then, the equation of (3.1.1) gives $\partial_{t} u=0$. Thus, u is constant. The boundary conditions imply that $u=0$ in Q_{α}. This is the desired injectivity.

We shall need the following result in order to justify all the calculus of Section 3.3.

Lemma 3.2.4 The space

$$
\left\{u \in H^{4}\left(P_{\alpha}\right) ; u_{/ \partial P_{\alpha} \backslash \Gamma_{T-\alpha}}=0\right\}
$$

is dense in the space

$$
\left\{u \in H^{1,2}\left(P_{\alpha}\right) ; u_{/ \partial P_{\alpha} \backslash \Gamma_{T-\alpha}}=0\right\} .
$$

Proof. Let Γ_{α} the part of the boundary of P_{α} where $t=\alpha$. Lemma 2.1.2 of Chapter 2 shows that the space

$$
\left\{u \in H^{4}\left(P_{\alpha}\right) ; u_{/ \partial P_{\alpha} \backslash \Gamma_{T-\alpha} \backslash \Gamma_{\alpha}}=0\right\}
$$

is dense in the space

$$
\left\{u \in H^{1,2}\left(P_{\alpha}\right) ; u_{/ \partial P_{\alpha} \backslash \Gamma_{T-\alpha} \backslash \Gamma_{\alpha}}=0\right\} .
$$

So, if

$$
u \in\left\{u \in H^{1,2}\left(P_{\alpha}\right) ; u_{/ \partial P_{\alpha} \backslash \Gamma_{T-\alpha} \backslash \Gamma_{\alpha}}=0\right\},
$$

then there exists a sequence

$$
\left(u_{n}\right) \in\left\{u \in H^{4}\left(P_{\alpha}\right) ; u_{/ \partial P_{\alpha} \backslash \Gamma_{T-\alpha} \backslash \Gamma_{\alpha}}=0\right\}
$$

such that

$$
u_{n} \rightharpoonup u \text { weakly in } H^{1,2}\left(P_{\alpha}\right), \quad n \rightarrow \infty .
$$

Let $\left(e_{n}\right)$ a sequence of $C^{\infty}([\alpha, T-\alpha])$ such that

$$
e_{n}(t)=\left\{\begin{array}{l}
1 \text { if } t \geq \alpha+\frac{1}{n} \\
0 \text { if } t \leq \alpha+\frac{1}{2 n}
\end{array}\right.
$$

The sequence $\left(e_{n} u_{n}\right)$ belongs to

$$
\left\{u \in H^{4}\left(P_{\alpha}\right) ; u_{/ \partial P_{\alpha} \backslash \Gamma_{T-\alpha}}=0\right\} .
$$

In addition

$$
e_{n} u_{n} \quad u \text { weakly in } H^{1,2}\left(P_{\alpha}\right), \quad n \rightarrow \infty .
$$

Remark 3.2.1 In Lemma 3.2.4, we can replace P_{α} by Q_{α} with the help of the change of variable ψ defined above.

3.3 An uniform estimate

Now we shall prove an uniform estimate which will allow us to take limits in α_{n}. We denote $u_{n} \in H^{1,2}\left(Q_{\alpha_{n}}\right)$ the solution of Problem (3.1.1) corresponding to a second member $f_{n}=f_{/ Q_{\alpha_{n}}} \in L^{2}\left(Q_{\alpha_{n}}\right)$ in

$$
\left.Q_{\alpha_{n}}=\Omega_{\alpha_{n}} \times\right] 0, b[
$$

where

$$
\Omega_{\alpha_{n}}=\left\{\left(t, x_{1}\right) \in \mathbb{R}^{2}: \alpha_{n}<t<T-\alpha_{n}, \varphi_{1}(t)<x_{1}<\varphi_{2}(t)\right\},
$$

with $\left(\alpha_{n}\right)_{n}$ a sequence decreasing to zero.
Proposition 3.3.1 There exists a constant K_{1} independent of n such that

$$
\left\|u_{n}\right\|_{H^{1,2}\left(Q_{\alpha_{n}}\right)} \leq K_{1}\left\|f_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)} \leq K_{1}\|f\|_{L^{2}(Q)}
$$

In order to prove Proposition 3.3.1, we need some preliminary results.

Lemma 3.3.1 Let $] \alpha, \beta\left[\subset \mathbb{R}\right.$. There exists a constant K_{2} (independent of α and β) such that

$$
\left\|u^{(j)}\right\|_{L^{2}(|\alpha, \beta|)}^{2} \leq(\beta-\alpha)^{2(2-j)} K_{2}\left\|u^{(2)}\right\|_{L^{2}(|\alpha, \beta|)}^{2}, j=0,1,
$$

for every $u \in H^{2}(] \alpha, \beta[) \cap H_{0}^{1}(] \alpha, \beta[)$, where $u^{(1)}$ (respectively $\left.u^{(2)}\right)$ is the first (respectively the second) derivative of u on $] \alpha, \beta\left[\right.$ and $u^{(0)}=u$.

Proof. Consider the particular case where $] \alpha, \beta[=] 0,1[$ and let f an arbitrary fixed element of $L^{2}(0,1)$. Then, the solution of the problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}=f \\
u(0)=0, \\
u(1)=0,
\end{array}\right.
$$

can be written in the form

$$
u(y)=\int_{0}^{1} G(x, y) f(y) d y
$$

where

$$
G(x, y)= \begin{cases}x(y-1) & \text { if } x \leq y \\ y(x-1) & \text { if } y \leq x\end{cases}
$$

By using the Cauchy-Schwarz inequality, we obtain the following estimate

$$
\|u\|_{\left.L^{2}(0,1]\right)}^{2} \leq K_{2}\|f\|_{\left.L^{2}(0,1]\right)}^{2}
$$

and thus

$$
\|u\|_{\left.L^{2}(0,1]\right)}^{2} \leq K_{2}\left\|u^{\prime \prime}\right\|_{L^{2}(00,1]}^{2}
$$

By a similar argument, we obtain

$$
\left\|u^{\prime}\right\|_{L^{2}([0,1])}^{2} \leq K_{2}\left\|u^{\prime \prime}\right\|_{L^{2}(0,1[)}^{2}
$$

from the following form of $u^{\prime}(y)$

$$
u^{\prime}(y)=\int_{0}^{y} f(x) d x-\int_{0}^{1}\left\{\int_{0}^{x} f(s) d s\right\} d x
$$

The general case follows from the previous particular case $] \alpha, \beta[=] 0,1[$ by an affine change of variable. Indeed, we define the following affine change of variable

$$
\begin{array}{ll}
{[0,1]} & \rightarrow[\alpha, \beta] \\
x & \rightarrow(1-x) \alpha+x \beta=y
\end{array}
$$

and we set

$$
u(x)=v(y) .
$$

Then if $u \in H^{2}(] 0,1[) \cap H_{0}^{1}(] 0,1[), v$ belongs to $H^{2}(] \alpha, \beta[) \cap H_{0}^{1}(] \alpha, \beta[)$. We have

$$
\begin{aligned}
\left\|u^{\prime}\right\|_{L^{2}(0,1)}^{2} & =\int_{0}^{1}\left(u^{\prime}\right)^{2}(x) d x \\
& =\int_{\alpha}^{\beta}\left(v^{\prime}\right)^{2}(y)(\beta-\alpha)^{2} \frac{d y}{\beta-\alpha} \\
& =\int_{\alpha}^{\beta}\left(v^{\prime}\right)^{2}(y)(\beta-\alpha) d y \\
& =(\beta-\alpha)\left\|v^{\prime}\right\|_{\left.L^{2}(\alpha, \beta]\right)}^{2} .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\left\|u^{\prime \prime}\right\|_{L^{2}(0,1)}^{2} & =\int_{0}^{1}\left(u^{\prime \prime}\right)^{2}(x) d x \\
& =\int_{\alpha}^{\beta}\left(v^{\prime \prime}\right)^{2}(y)(\beta-\alpha)^{3} d y \\
& =(\beta-\alpha)^{3}\left\|v^{\prime \prime}\right\|_{L^{2}([\alpha, \beta)}^{2} .
\end{aligned}
$$

Using the inequality

$$
\left\|u^{\prime}\right\|_{L^{2}(0,1)}^{2} \leq K_{2}\left\|u^{\prime \prime}\right\|_{L^{2}(0,1)}^{2}
$$

of the previous case, we obtain the desired inequality

$$
\left\|v^{\prime}\right\|_{L^{2}(\jmath \alpha, \beta \mid)}^{2} \leq K_{2}(\beta-\alpha)^{2}\left\|v^{\prime \prime}\right\|_{L^{2}(|\alpha, \beta|)}^{2}
$$

The inequality

$$
\|v\|_{L^{2}([\alpha, \beta])}^{2} \leq K_{2}(\beta-\alpha)^{4}\left\|v^{\prime \prime}\right\|_{L^{2}([\alpha, \beta \mid)}^{2}
$$

can be obtained by a similar method.

Lemma 3.3.2 For every $\epsilon>0$, chosen such that $\left(\varphi_{2}(t)-\varphi_{1}(t)\right) \leq \epsilon$, there exists a constant C_{1} independent of n such that

$$
\left\|\partial_{x_{1}}^{j} u_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)}^{2} \leq C_{1} \epsilon^{2(2-j)}\left\|\partial_{x_{1}}^{2} u_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)}^{2}, j=0,1 .
$$

Proof. Replacing in Lemma 3.3.1 u by u_{n} and $] \alpha, \beta[$ by $] \varphi_{1}(t), \varphi_{2}(t)[$, for a fixed t, we obtain

$$
\begin{aligned}
\int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left(\partial_{x_{1}}^{j} u_{n}\right)^{2} d x_{1} & \leq K_{2}\left(\varphi_{2}(t)-\varphi_{1}(t)\right)^{2(2-j)} \int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left(\partial_{x_{1}}^{2} u_{n}\right)^{2} d x_{1} \\
& \leq K_{2} \epsilon^{2(2-j)} \int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left(\partial_{x_{1}}^{j} u_{n}\right)^{2} d x_{1}
\end{aligned}
$$

Integrating in the previous inequality with respect to t, then with respect to x_{2}, we get the desired result with $C_{1}=K_{2}$.

Proof. of Proposition (3.3.1) Let us denote the inner product in $L^{2}\left(Q_{\alpha_{n}}\right)$ by $\langle.,$.$\rangle ,$ then we have

$$
\begin{aligned}
\left\|f_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)}^{2}= & \left\langle\partial_{t} u_{n}-\partial_{x_{1}}^{2} u_{n}-\partial_{x_{2}}^{2} u_{n}, \partial_{t} u_{n}-\partial_{x_{1}}^{2} u-\partial_{x_{2}}^{2} u_{n}\right\rangle \\
= & \left\|\partial_{t} u_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)}^{2}+\left\|\partial_{x_{1}}^{2} u_{n}\right\|_{L^{2}\left(Q_{\left.\alpha_{n}\right)}\right)}^{2}+\left\|\partial_{x_{2}}^{2} u_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)}^{2} \\
& -2\left\langle\partial_{t} u_{n}, \partial_{x_{1}}^{2} u_{n}\right\rangle-2\left\langle\partial_{t} u_{n}, \partial_{x_{2}}^{2} u_{n}\right\rangle+2\left\langle\partial_{x_{1}}^{2} u_{n}, \partial_{x_{2}}^{2} u_{n}\right\rangle .
\end{aligned}
$$

1) Estimation of $-2\left\langle\partial_{t} u_{n}, \partial_{x_{1}}^{2} u_{n}\right\rangle$ We have

$$
\partial_{t} u_{n} \partial_{x_{1}}^{2} u_{n}=\partial_{x_{1}}\left(\partial_{t} u_{n} \partial_{x_{1}} u_{n}\right)-\frac{1}{2} \partial_{t}\left(\partial_{x_{1}} u_{n}\right)^{2} .
$$

Then

$$
\begin{aligned}
-2\left\langle\partial_{t} u_{n}, \partial_{x_{1}}^{2} u_{n}\right\rangle= & -2 \int_{Q_{\alpha_{n}}} \partial_{t} u_{n} \partial_{x_{1}}^{2} u_{n} d t d x_{1} d x_{2} \\
= & -2 \int_{Q_{\alpha_{n}}} \partial_{x_{1}}\left(\partial_{t} u_{n} \partial_{x_{1}} u_{n}\right) d t d x_{1} d x_{2} \\
& +\int_{Q_{\alpha_{n}}} \partial_{t}\left(\partial_{x_{1}} u_{n}\right)^{2} d t d x_{1} d x_{2} \\
= & \int_{\partial Q_{\alpha_{n}}}\left[\left(\partial_{x_{1}} u_{n}\right)^{2} \nu_{t}-2 \partial_{t} u_{n} \partial_{x_{1}} u_{n} \nu_{x_{1}}\right] d \sigma
\end{aligned}
$$

where $\nu_{t}, \nu_{x_{1}}, \nu_{x_{2}}$ are the components of the unit outward normal vector at $\partial Q_{\alpha_{n}}$. We shall rewrite the boundary integral making use of the boundary conditions. On the parts of the boundary of $Q_{\alpha_{n}}$ where $t=\alpha_{n}, x_{2}=0$ and $x_{2}=b$ we have $u_{n}=0$ and consequently $\partial_{x_{1}} u_{n}=0$. The correponding boundary integral vanishes. On the part of the boundary where $t=T-\alpha_{n}$, we have $\nu_{x_{1}}=0$ and $\nu_{t}=1$. Accordingly the correponding boundary integral

$$
A=\int_{0}^{b} \int_{\varphi_{1}\left(T-\alpha_{n}\right)}^{\varphi_{2}\left(T-\alpha_{n}\right)}\left(\partial_{x_{1}} u_{n}\right)^{2} d x_{1} d x_{2}
$$

is nonnegative. On the part of the boundary where $x_{1}=\varphi_{i}(t), i=1,2$, we have $u_{n}=0$. Differentiating with respect to t we obtain

$$
\partial_{t} u_{n}=-\varphi_{i}^{\prime}(t) \partial_{x_{1}} u_{n}
$$

Consequently, the correponding boundary integral is

$$
\begin{aligned}
& -\int_{0}^{b} \int_{\alpha_{h}}^{T-\alpha_{n}} \varphi_{1}^{\prime}(t)\left[\partial_{x_{1}} u_{n}\left(t, \varphi_{1}(t), x_{2}\right)\right]^{2} d t d x_{2} \\
& +\int_{0}^{b} \int_{\alpha_{n}}^{T-\alpha_{n}} \varphi_{2}^{\prime}(t)\left[\partial_{x_{1}} u_{n}\left(t, \varphi_{2}(t), x_{2}\right)\right]^{2} d t d x_{2}
\end{aligned}
$$

By setting

$$
\begin{aligned}
& I_{1}=-\int_{0}^{b} \int_{\alpha_{n}}^{T-\alpha_{n}} \varphi_{1}^{\prime}(t)\left[\partial_{x_{1}} u_{n}\left(t, \varphi_{1}(t), x_{2}\right)\right]^{2} d t d x_{2} \\
& I_{2}=\int_{0}^{b} \int_{\alpha_{n}}^{T-\alpha_{n}} \varphi_{2}^{\prime}(t)\left[\partial_{x_{1}} u_{n}\left(t, \varphi_{2}(t), x_{2}\right)\right]^{2} d t d x_{2}
\end{aligned}
$$

we have

$$
\begin{equation*}
-2\left\langle\partial_{t} u_{n}, \partial_{x_{1}}^{2} u_{n}\right\rangle \geq-\left|I_{1}\right|-\left|I_{2}\right| \tag{3.3.1}
\end{equation*}
$$

Lemma 3.3.3 There exists a constant K_{4} independent of n such that

$$
\left|I_{i}\right| \leq K_{4} \epsilon\left\|\partial_{x_{1}}^{2} u_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)}^{2}, \quad i=1,2 .
$$

Proof. We convert the boundary integral I_{1} into a surface integral by setting

$$
\left.\begin{array}{rl}
{\left[\partial_{x_{1}} u_{n}\left(t, \varphi_{1}(t), x_{2}\right)\right]^{2}=} & -\left.\frac{\varphi_{2}(t)-x_{1}}{\varphi_{2}(t)-\varphi_{1}(t)}\left[\partial_{x_{1}} u_{n}\left(t, x_{1}, x_{2}\right)\right]^{2}\right|_{x_{1}=\varphi_{1}(t)} ^{x_{1}=\varphi_{2}(t)} \\
= & -\int_{\varphi_{1}(t)}^{\varphi_{2}(t)} \\
= & -2 \int_{x_{1}(t)}\left\{\frac{\varphi_{2}(t)-x_{1}}{\varphi_{2}(t)-\varphi_{1}(t)}\left[\partial_{x_{1}} u_{n}\right]^{2}\right\} d x_{1} \\
& +\int_{\varphi_{1}(t)}^{\varphi_{2}(t)} \frac{\varphi_{2}(t)-x_{1}}{\varphi_{2}(t)-\varphi_{1}(t)} \partial_{x_{1}} u_{n} \cdot \partial_{x_{1}}^{2} u_{n} d x_{1} \\
\varphi_{2}(t)-\varphi_{1}(t)
\end{array} \partial_{x_{1}} u_{n}\right]^{2} d x_{1} .
$$

Then, we have

$$
\begin{aligned}
I_{1}= & -\int_{0}^{b} \int_{\alpha_{n}}^{T-\alpha_{n}} \varphi_{1}^{\prime}(t)\left[\partial_{x_{1}} u_{n}\left(t, \varphi_{1}(t), x_{2}\right)\right]^{2} d t d x_{2} \\
= & -\int_{Q_{\alpha_{n}}} \frac{\varphi_{1}^{\prime}(t)}{\varphi_{2}(t)-\varphi_{1}(t)}\left(\partial_{x_{1}} u_{n}\right)^{2} d t d x_{1} d x_{2} \\
& +2 \int_{Q_{\alpha_{n}}} \frac{\varphi_{2}(t)-x_{1}}{\varphi_{2}(t)-\varphi_{1}(t)} \varphi_{1}^{\prime}(t)\left(\partial_{x_{1}} u_{n}\right)\left(\partial_{x_{1}}^{2} u_{n}\right) d t d x_{1} d x_{2} .
\end{aligned}
$$

Thanks to Lemma 3.3.2, we can write

$$
\int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left[\partial_{x_{1}} u_{n}\right]^{2} d x_{1} \leq K_{2}\left[\varphi_{2}(t)-\varphi_{1}(t)\right]^{2} \int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left[\partial_{x_{1}}^{2} u_{n}\right]^{2} d x_{1}
$$

Therefore

$$
\int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left[\partial_{x_{1}} u_{n}\right]^{2} \frac{\left|\varphi_{1}^{\prime}\right|}{\varphi_{2}-\varphi_{1}} d x_{1} \leq K_{2}^{2}\left|\varphi_{1}^{\prime}\right|\left[\varphi_{2}-\varphi_{1}\right] \int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left[\partial_{x_{1}}^{2} u_{n}\right]^{2} d x_{1}
$$

consequently

$$
\begin{aligned}
\left|I_{1}\right| \leq & K_{2} \int_{Q_{\alpha_{n}}}\left|\varphi_{1}^{\prime}\right|\left[\varphi_{2}-\varphi_{1}\right]\left(\partial_{x_{1}}^{2} u_{n}\right)^{2} d t d x_{1} d x_{2} \\
& +2 \int_{Q_{\alpha_{n}}}\left|\varphi_{1}^{\prime}\right|\left|\partial_{x_{1}} u_{n}\right|\left|\partial_{x_{1}}^{2} u_{n}\right| d t d x_{1} d x_{2}
\end{aligned}
$$

since $\left|\frac{\varphi_{2}(t)-x_{1}}{\varphi_{2}(t)-\varphi_{1}(t)}\right| \leq 1$. Using the inequality

$$
2\left|\varphi_{1}^{\prime} \partial_{x_{1}} u_{n}\right|\left|\partial_{x_{1}}^{2} u_{n}\right| \leq \epsilon\left(\partial_{x_{1}}^{2} u_{n}\right)^{2}+\frac{1}{\epsilon}\left(\varphi_{1}^{\prime}\right)^{2}\left(\partial_{x_{1}} u_{n}\right)^{2}
$$

for all $\epsilon>0$, we obtain

$$
\begin{aligned}
\left|I_{1}\right| \leq & K_{2} \int_{Q_{\alpha_{n}}}\left|\varphi_{1}^{\prime}\right|\left[\varphi_{2}-\varphi_{1}\right]\left(\partial_{x_{1}}^{2} u_{n}\right)^{2} d t d x_{1} d x_{2} \\
& +\int_{Q_{\alpha_{n}}} \epsilon\left(\partial_{x_{1}}^{2} u_{n}\right)^{2} d t d x_{1} d x_{2}+\frac{1}{\epsilon} \int_{Q_{\alpha_{n}}}\left(\varphi_{1}^{\prime}\right)^{2}\left(\partial_{x_{1}} u_{n}\right)^{2} d t d x_{1} d x_{2}
\end{aligned}
$$

Lemma 3.3.2 yields

$$
\frac{1}{\epsilon} \int_{Q_{\alpha_{n}}}\left(\varphi_{1}^{\prime}\right)^{2}\left(\partial_{x_{1}} u_{n}\right)^{2} d t d x_{1} d x_{2} \leq K_{2} \frac{1}{\epsilon} \int_{Q_{\alpha_{n}}}\left(\varphi_{1}^{\prime}\right)^{2}\left[\varphi_{2}-\varphi_{1}\right]^{2}\left(\partial_{x_{1}}^{2} u_{n}\right)^{2} d t d x_{1} d x_{2}
$$

Thus,

$$
\begin{aligned}
\left|I_{1}\right| \leq & K_{2} \int_{Q_{\alpha_{n}}}\left[\left|\varphi_{1}^{\prime}\right|\left|\varphi_{2}-\varphi_{1}\right|+\frac{1}{\epsilon}\left(\varphi_{1}^{\prime}\right)^{2}\left|\varphi_{2}-\varphi_{1}\right|^{2}\right]\left(\partial_{x_{1}}^{2} u_{n}\right)^{2} d t d x_{1} d x_{2} \\
& +\int_{Q_{\alpha_{n}}} \epsilon\left(\partial_{x_{1}}^{2} u_{n}\right)^{2} d t d x_{1} d x_{2} \\
\leq & \left(2 K_{2}+1\right) \epsilon \int_{Q_{\alpha_{n}}}\left(\partial_{x_{1}}^{2} u_{n}\right)^{2} d t d x_{1} d x_{2}
\end{aligned}
$$

since $\left|\varphi_{1}^{\prime}\left(\varphi_{2}-\varphi_{1}\right)\right| \leq \epsilon$. Finally, taking $K_{4}=\left(2 K_{2}^{2}+1\right)$, we obtain

$$
\left|I_{1}\right| \leq K_{4} \epsilon\left\|\partial_{x_{1}}^{2} u_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)}
$$

The inequality

$$
\left|I_{2}\right| \leq K_{4} \epsilon\left\|\partial_{x_{1}}^{2} u_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)},
$$

can be proved by a similar method.
This ends the proof of Lemma 3.3.3.
2) Estimation of $-2\left\langle\partial_{t} u_{n}, \partial_{x_{2}}^{2} u_{n}\right\rangle$: We have

$$
\partial_{t} u_{n} \partial_{x_{2}}^{2} u_{n}=\partial_{x_{2}}\left(\partial_{t} u_{n} \partial_{x_{2}} u_{n}\right)-\frac{1}{2} \partial_{t}\left(\partial_{x_{2}} u_{n}\right)^{2} .
$$

Then

$$
\begin{aligned}
-2\left\langle\partial_{t} u_{n}, \partial_{x_{2}}^{2} u_{n}\right\rangle= & -2 \int_{Q_{\alpha_{n}}} \partial_{t} u_{n} \partial_{x_{2}}^{2} u_{n} d t d x_{1} d x_{2} \\
= & -2 \int_{Q_{\alpha_{n}}} \partial_{x_{2}}\left(\partial_{t} u_{n} \partial_{x_{2}} u_{n}\right) d t d x_{1} d x_{2} \\
& +\int_{Q_{\alpha_{n}}} \partial_{t}\left(\partial_{x_{2}} u_{n}\right)^{2} d t d x_{1} d x_{2} \\
= & \int_{\partial Q_{\alpha_{n}}}\left[\left(\partial_{x_{2}} u_{n}\right)^{2} \nu_{t}-2 \partial_{t} u_{n} \partial_{x_{2}} u_{n} \nu_{x_{2}}\right] d \sigma .
\end{aligned}
$$

Using the Cauchy-Dirichlet boundary conditions, we see that the above boundary integral is nonnegative. Consequently

$$
\begin{equation*}
-2\left\langle\partial_{t} u_{n}, \partial_{x_{2}}^{2} u_{n}\right\rangle \geq 0 \tag{3.3.2}
\end{equation*}
$$

3) Estimation of $2\left\langle\partial_{x_{1}}^{2} u_{n}, \partial_{x_{2}}^{2} u_{n}\right\rangle$: We have

$$
\partial_{x_{1}}^{2} u_{n} \cdot \partial_{x_{2}}^{2} u_{n}=\partial_{x_{1}}\left(\partial_{x_{1}} u_{n} \cdot \partial_{x_{2}}^{2} u_{n}\right)-\partial_{x_{2}}\left(\partial_{x_{1}} u_{n} . \partial_{x_{1}} \partial_{x_{2}} u_{n}\right)+\left(\partial_{x_{1}} \partial_{x_{2}} u_{n}\right)^{2} .
$$

Then

$$
\begin{aligned}
2\left\langle\partial_{x_{1}}^{2} u_{n}, \partial_{x_{2}}^{2} u_{n}\right\rangle= & 2 \int_{Q_{\alpha_{n}}} \partial_{x_{1}}^{2} u_{n} \cdot \partial_{x_{2}}^{2} u_{n} d t d x_{1} d x_{2} \\
= & 2 \int_{Q_{\alpha_{n}}} \partial_{x_{1}}\left(\partial_{x_{1}} u_{n} \cdot \partial_{x_{2}}^{2} u_{n}\right) d t d x_{1} d x_{2} \\
& -2 \int_{Q_{\alpha_{n}}} \partial_{x_{2}}\left(\partial_{x_{1}} u_{n} \cdot \partial_{x_{1}} \partial_{x_{2}} u_{n}\right) d t d x_{1} d x_{2} \\
& +2 \int_{Q_{\alpha_{n}}}\left(\partial_{x_{1}} \partial_{x_{2}} u_{n}\right)^{2} d t d x_{1} d x_{2} \\
= & 2 \int_{Q_{\alpha_{n}}}\left(\partial_{x_{1}} \partial_{x_{2}} u_{n}\right)^{2} d t d x_{1} d x_{2} \\
& +2 \int_{\partial Q_{\alpha_{n}}}\left[\partial_{x_{1}} u_{n} \partial_{x_{2}}^{2} u_{n} \nu_{x_{1}}-\partial_{x_{1}} u_{n} \cdot \partial_{x_{1}} \partial_{x_{2}} u_{n} \nu_{x_{2}}\right] d \sigma .
\end{aligned}
$$

Thanks to the boundary conditions, we obtain

$$
\begin{equation*}
2\left\langle\partial_{x_{1}}^{2} u_{n}, \partial_{x_{2}}^{2} u_{n}\right\rangle \geq 2\left\|\partial_{x_{1}} \partial_{x_{2}} u_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)}^{2} . \tag{3.3.3}
\end{equation*}
$$

Then, summing up the estimates (3.3.1), (3.3.2) and (3.3.3) of the inner products, and making use of Lemma 3.3.3, we then obtain

$$
\begin{aligned}
\left\|f_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)}^{2} \geq & \left\|\partial_{t} u_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)}^{2}+\left\|\partial_{x_{1}}^{2} u_{n}\right\|_{L^{2}\left(Q_{\left.\alpha_{n}\right)}\right)}^{2}+\left\|\partial_{x_{2}}^{2} u_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)}^{2} \\
& -\left|I_{1}\right|-\left|I_{2}\right|+2\left\|\partial_{x_{1}} \partial_{x_{2}} u_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)}^{2} \\
\geq & \left\|\partial_{t} u_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)}^{2}+\left(1-2 K_{4} \epsilon\right)\left\|\partial_{x_{1}}^{2} u_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)}^{2} \\
& +\left\|\partial_{x_{2}}^{2} u_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)}^{2}+2\left\|\partial_{x_{1}} \partial_{x_{2}} u_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)}^{2} .
\end{aligned}
$$

Then, it is sufficient to choose ϵ such that $\left(1-2 K_{4} \epsilon\right)>0$ to get a constant $K_{0}>0$ independent of n such that

$$
\left\|f_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)} \geq K_{0}\left\|u_{n}\right\|_{H^{1,2}\left(Q_{\alpha_{n}}\right)}
$$

and since

$$
\left\|f_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)} \leq\|f\|_{L^{2}(Q)},
$$

there exists a constant $K_{1}>0$, independent of n satisfying

$$
\left\|u_{n}\right\|_{H^{1,2}\left(Q_{\alpha_{n}}\right)} \leq K_{1}\left\|f_{n}\right\|_{L^{2}\left(Q_{\alpha_{n}}\right)} \leq K_{1}\|f\|_{L^{2}(Q)} .
$$

This completes the proof of Proposition 3.3.1.

3.4 Passage to the limit

We are now able to prove the main result of this work

Theorem 3.4.1 We assume that φ_{1} and φ_{2} fulfil the conditions (3.1.2) and (3.1.3), then the heat operator

$$
L=\partial_{t}-\partial_{x_{1}}^{2}-\partial_{x_{2}}^{2}
$$

is an isomorphism from $H_{0}^{1,2}(Q)$ into $L^{2}(Q)$.

Proof. Choose a sequence $Q_{\alpha_{n}} n=1,2, \ldots$ of reference domains (see Section 3.2) such that $Q_{\alpha_{n}} \subseteq Q$ with $\left(\alpha_{n}\right)$ a sequence decreasing to 0 , as $n \rightarrow \infty$. Then we have $Q_{\alpha_{n}} \rightarrow Q$, as $n \rightarrow \infty$.

Consider the solution $u_{\alpha_{n}} \in H^{1,2}\left(Q_{\alpha_{n}}\right)$ of the Cauchy-Dirichlet problem

$$
\left\{\begin{array}{l}
\partial_{t} u_{\alpha_{n}}-\partial_{x_{1}}^{2} u_{\alpha_{n}}-\partial_{x_{2}}^{2} u_{\alpha_{n}}=f \quad \text { in } Q_{\alpha_{n}} \\
u_{\alpha_{n} / \partial Q-\Gamma_{T-\alpha_{n}}}=0,
\end{array}\right.
$$

with $\Gamma_{T-\alpha_{n}}$ is the part of the boundary of $Q_{\alpha_{n}}$ where $t=T-\alpha_{n}$. Such a solution $u_{\alpha_{n}}$ exists by Theorem 3.2.1. Let $\widetilde{u_{\alpha_{n}}}$ the 0 -extension of $u_{\alpha_{n}}$ to Q. In virtue of Proposition 3.3.1, we know that there exists a constant C such that

$$
\left\|\widetilde{u_{\alpha_{n}}}\right\|_{L^{2}(Q)}+\left\|\widetilde{\partial_{t} u_{\alpha_{n}}}\right\|_{L^{2}(Q)}+\sum_{\substack{i, j=0 \\ 1 \leq i+j \leq 2}}^{2}\left\|\widetilde{\partial_{x_{1}}^{j} \partial_{x_{2}}^{j} u_{\alpha_{n}}}\right\|_{L^{2}(Q)} \leq C\|f\|_{L^{2}(Q)} .
$$

This means that $\widetilde{u_{\alpha_{n}}}, \widetilde{\partial_{t} u_{\alpha_{n}}}, \widetilde{\partial_{x_{1}}^{j} \partial_{x_{2} u_{\alpha_{n}}^{j}}}$ for $1 \leq i+j \leq 2$ are bounded functions in $L^{2}(Q)$. So for a suitable increasing sequence of integers $n_{k}, k=1,2, \ldots$, there exist functions

$$
u, v \text { and } v_{i, j} 1 \leq i+j \leq 2
$$

in $L^{2}(Q)$ such that

$$
\begin{array}{lll}
\widetilde{u_{\alpha_{n_{k}}}} & \rightharpoonup u & \text { weakly in } L^{2}(Q), \quad k \rightarrow \infty \\
\frac{\partial_{t} u_{\alpha_{n_{k}}}}{} & \rightharpoonup v \quad \text { weakly in } L^{2}(Q), \quad k \rightarrow \infty \\
\partial_{x_{1} \partial_{x_{2}}^{j} u_{\alpha_{n}}}^{j} & \rightharpoonup v_{i, j} & \text { weakly in } L^{2}(Q), \\
\text { a }
\end{array}
$$

Let then $\theta \in D(Q)$. For n_{k} large enough we have $\operatorname{supp} \theta \subset Q_{\alpha_{n_{k}}}$. Thus

$$
\begin{aligned}
\left\langle v_{1,0}, \theta\right\rangle_{D^{\prime}(Q) \times D(Q)} & =\lim _{n_{k} \rightarrow \infty} \int_{Q} \widetilde{\partial_{x_{1}} u_{\alpha_{n_{k}}}} \cdot \theta d t d x_{1} d x_{2} \\
& =\lim _{n_{k} \rightarrow \infty} \int_{Q_{\alpha_{n_{k}}}} \partial_{x_{1}} u_{\alpha_{n_{k}}} \cdot \theta d t d x_{1} d x_{2} \\
& =\lim _{n_{k} \rightarrow \infty}\left\langle\partial_{x_{1}} u_{\alpha_{n_{k}}}, \theta\right\rangle_{D^{\prime}}\left(Q_{\alpha_{n_{k}}}\right) \times D\left(Q_{\alpha_{n_{k}}}\right) \\
& \left.=-\lim _{n_{k} \rightarrow \infty}\left\langle u_{u_{\alpha_{n_{k}}}}, \partial_{x_{1}} \theta\right\rangle_{D^{\prime}\left(Q_{\alpha_{n_{k}}}\right.}\right) \times D\left(Q_{\alpha_{n_{k}}}\right) \\
& =-\lim _{n_{k} \rightarrow \infty} \int_{Q} \widetilde{u_{\alpha_{n_{k}}}} \cdot \partial_{x_{1}} \theta d t d x_{1} d x_{2} \\
& =-\lim _{n_{k} \rightarrow \infty}\left\langle\widetilde{u_{\alpha_{n_{k}}}}, \partial_{x_{1}} \theta\right\rangle_{D^{\prime}(Q) \times D(Q)} \\
& =-\left\langle u, \partial_{x_{1}} \theta\right\rangle_{D^{\prime}(Q) \times D(Q)} \\
& =\left\langle\partial_{x_{1}} u, \theta\right\rangle_{D^{\prime}(Q) \times D(Q)} .
\end{aligned}
$$

Then, $v_{1,0}=\partial_{x_{1}} u$ in $D^{\prime}(Q)$ and so in $L^{2}(Q)$. By a similar manner, we prove that

$$
v=\partial_{t} u, v_{i, j}=\partial_{x_{1}}^{i} \partial_{x_{2}}^{j} u, 1 \leq i+j \leq 2
$$

in the sense of distributions in Q and so in $L^{2}(Q)$. Finally, $u \in H^{1,2}(Q)$. On the other hand,

$$
\partial_{t} u_{\alpha_{n_{k}}}-\partial_{x_{1}}^{2} u_{\alpha_{n_{k}}}-\partial_{x_{2}}^{2} u_{\alpha_{n_{k}}}=f_{n_{k}}=f_{/ Q_{\alpha_{n_{k}}}}
$$

and

$$
\widetilde{\partial_{t} u_{\alpha_{n_{k}}}}-\widetilde{\partial_{x_{1}}^{2} u_{\alpha_{n_{k}}}}-\widetilde{\partial_{x_{2}}^{2} u_{\alpha_{n_{k}}}}=\widetilde{f_{n_{k}}} .
$$

But

$$
\widetilde{f_{n_{k}}} \longrightarrow f \text { in } L^{2}(Q)
$$

and

$$
\widetilde{\partial_{t} u_{\alpha_{n_{k}}}}-\widetilde{\partial_{x_{1}}^{2} u_{\alpha_{n_{k}}}}-\widetilde{\partial_{x_{2}}^{2} u_{\alpha_{n_{k}}}} \rightharpoonup \partial_{t} u-\partial_{x_{1}}^{2} u-\partial_{x_{2}}^{2} u .
$$

So, we have

$$
\partial_{t} u-\partial_{x_{1}}^{2} u-\partial_{x_{2}}^{2} u=f \text { in } Q
$$

On the hand, the solution u satisfies the boundary conditions $u_{/ \partial Q-\Gamma_{T}}=0$ since

$$
\forall n \in \mathbb{N}, u_{/ Q_{\alpha_{n}}}=u_{\alpha_{n}} .
$$

This proves the existence of a solution to Problem 3.1.1.
Notice that we have the estimate

$$
\|u\|_{H^{1.2}(Q)}^{2} \leq K\|f\|_{L^{2}(Q)}^{2}
$$

which implies the uniqueness of the solution.

Remark 3.4.1 The result given in Theorem 3.4.1 holds true only under the assumption (3.1.2) (respectively, (3.1.3)), if $\varphi_{1}(0)=\varphi_{2}(0)$ and $\varphi_{1}(T)<\varphi_{2}(T)$ (respectively, if $\varphi_{1}(0)<\varphi_{2}(0)$ and $\left.\varphi_{1}(T)=\varphi_{2}(T)\right)$.

Remark 3.4.2 Note that this work may be extended at least in the following directions:

1. The non-regular domain Q may be replaced by a non-cylindrical domain (conical domain, for example).
2. The function f on the right-hand side of the equation of Problem (3.1.1), may be taken in $L^{p}(Q)$, where $\left.p \in\right] 1, \infty[$. The method used here does not seem to be appropriate for the space $L^{p}(Q)$ when $p \neq 2$.
3. The operator L may be replaced by a high order operator.
