
CHAPTER

3 Parabolic equation with

Cauchy-Dirichlet

boundary conditions in a

non-regular domain of R3

Abstract. In this work we give new results of existence, uniqueness and maximal regu-

larity of a solution to a parabolic equation set in a non-regular domain

Q =
�
(t; x1) 2 R

2 : 0 < t < T ;'1 (t) < x1 < '2 (t)
	
� ]0; b[

of R3, with Cauchy-Dirichlet boundary conditions, under some assumptions on the func-

tions ('i)i=1;2. The right hand side term of the equation is taken in L2(Q). The method

used is based on the approximation of the domain Q by a sequence of sub-domains (Qn)n

which can be transformed into regular domains. This work is an extension of the one

space variable case studied in [58].

Key words. Parabolic equations, non-regular domains, anisotropic Sobolev spaces.
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3.1. Introduction

3.1 Introduction

Let 
 be an open set of R2 de�ned by


 =
�
(t; x1) 2 R

2 : 0 < t < T ;'1 (t) < x1 < '2 (t)
	

where T is a �nite positive number, while '1 and '2 are continuous real-valued functions

de�ned on [0; T ], Lipschitz continuous on ]0; T [, and such that

'1 (t) < '2 (t)

for t 2]0; T [. '1 is allowed to coincide with '2 for t = 0 and for t = T . For a �xed positive

number b, let Q be the three-dimensional domain de�ned by

Q =
�
(t; x1) 2 R

2 : 0 < t < T ;'1 (t) < x1 < '2 (t)
	
� ]0; b[ ,

with boundary @Q = (�� ]0; b[)[ (
� f0g)[ (
� fbg), � is the boundary of 
 (see Fig.

6).

In this work, we study the existence and the regularity of the solution of the parabolic

equation with Cauchy-Dirichlet boundary conditions

8
>>><
>>>:

@tu� @2x1u� @2x2u = f in Q

u = 0 on @Q n �T ,

(3.1.1)

where �T is the part of the boundary of Q where t = T . The right-hand side term f of

the equation lies in L2 (Q).

In Baderko [8] we can �nd domains of the same kind but which can not include our

domain. In Sadallah [58] the same problem has been studied for a 2m-parabolic operator

in the case of one space variable. Further references on the analysis of parabolic problems

in non-cylindrical domains are: Savaré [64], Aref�ev and Bagirov [5], Ho¤mann and Lewis

[22], Labbas, Medeghri and Sadallah [32], [33], and Alkhutov [3]. There are many other

works concerning boundary-value problems in non-smooth domains (see, for example,

Grisvard [20] and the references therein).
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3.2. Resolution of the problem in a reference domain

We are especially interested in the question of what conditions the functions ('i)i=1;2

must verify in order that Problem (3.1.1) has a solution with optimal regularity, that is a

solution u belonging to the anisotropic Sobolev space

H
1;2
0 (Q) :=

�
u 2 H1;2 (Q) : u=@Qr�T = 0

	

with

H1;2 (Q) =
�
u 2 L2 (Q) : @tu; @

j
x1
u; @jx2u; @x1@x2u 2 L

2 (Q) ; j = 1; 2
	
?

An idea to solve Problem (3.1.1) consists in transforming the parabolic equation in the

non-regular domain Q into a variable-coe¢cient equation in a regular domain. However,

in order to perform this, one must assume that '1 (0) < '2 (0) and '1 (T ) < '2 (T ). So,

in Section 3.2, we prove that Problem (3.1.1) admits a (unique) solution when Q could

be transformed into a regular domain by means of a regular change of variable, i.e., we

suppose that '1 (0) < '2 (0) and '1 (T ) < '2 (T ). In Section 3.3 we approximate Q by a

sequence (Q�n) of such domains and we establish an uniform estimate of the type

kunkH1;2(Q�n )
� K kfkL2(Q�n ) ,

where un is the solution of Problem (3.1.1) in Q�n and K is a constant independent of n.

Finally, in Section 3.4 we take limits in (Q�n) in order to reach the domain Q.

The main assumptions on the functions ('i)i=1;2 are

'0i (t) ('2 (t)� '1 (t)) �! 0 as t �! 0, i = 1; 2, (3.1.2)

and

'0i (t) ('2 (t)� '1 (t)) �! 0 as t �! T , i = 1; 2. (3.1.3)

3.2 Resolution of the problem in a reference domain

In this section, we replace Q by

Q� =
�
(t; x1) 2 R

2 : � < t < T � �;'1 (t) < x1 < '2 (t)
	
� ]0; b[ ,
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3.2. Resolution of the problem in a reference domain

with � > 0. Thus, we have

8
<
:

'1 (�) < '2 (�)

'1 (T � �) < '2 (T � �) ,

(see Fig. 6).

Fig. 6 : The non-regular domains Q and Q�.

We can �nd a change of variable  mapping Q� into the parallelepiped

P� = ]�; T � �[� ]0; 1[� ]0; b[ ,

which leaves the variable t unchanged.  is de�ned as follows:

 : Q� �! P�

(t; x1; x2) 7�!  (t; x1; x2) = (�; y1; y2) =

�
t;

x1 � '1 (t)

'2 (t)� '1 (t)
; x2

�
.
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3.2. Resolution of the problem in a reference domain

The mapping  transforms the parabolic equation in the domain Q� into a variable-

coe¢cient parabolic equation in the parallelepiped P�. Indeed, the equation

@tu� @2x1u� @2x2u = f

in Q� is equivalent to the following

@�v + a (�; y1) @y1v � c (�) @2y1v � @2y2v = g

in P�, where a and c are de�ned by

a (�; y1) =
('01 (�)� '02 (�)) y1 � '01 (�)

'2 (�)� '1 (�)
,

c (�) =
1

('2 (�)� '1 (�))
2

and

g (�; y1; y2) = f (t; x1; x2) ,

v (�; y1; y2) = u (t; x1; x2) .

Since the functions a, c and '2 � '1 are bounded, it is easy to check the following

Lemma 3.2.1 u 2 H1;2 (Q�) if and only if v 2 H
1;2 (P�).

Proof. The mapping  is tri-Lipschitz and therefore it preserves the Sobolev spaces

H1;2.

The boundary conditions on v which correspond to the boundary conditions on u are

the following

v=@P�r�T�� = 0,

where �T�� is the part of the boundary of P� where t = T � �.

In the sequel, the variables (�; y1; y2) will be denoted again by (t; x1; x2).

Theorem 3.2.1 The operator

L0 = @t + a@x1 � c@2x1 � @2x2

is an isomorphism from H
1;2
0 (P�) into L

2 (P�), with

H
1;2
0 (P�) =

�
u 2 H1;2 (P�) : u=@P�r�T�� = 0

	
.
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3.2. Resolution of the problem in a reference domain

Consider the simpli�ed problem
8
<
:

@tv � c (t) @2x1v � @2x2v = g in P�

v=@P�r�T�� = 0.
(3.2.1)

Note that g 2 L2 (P�) if and only if f 2 L
2 (Q�).

Lemma 3.2.2 For every g 2 L2 (P�), there exists a unique v 2 H
1;2
0 (P�) solution of

Problem (3.2.1).

Proof. Since the coe¢cient c (t) is continuous in P�, the optimal regularity is given

by Ladyzhenskaya-Solonnikov-Ural�tseva [35]. Then in order to apply this classical result,

it is important to observe that the operator

L1 = @t � c@2x1 � @2x2

is uniformly parabolic. Indeed L1 can be written in the divergential form as

L1 = @t �

2X

i;j=1

@xi
�
aij (t) @xj

�

with

a11 (t) = c (t) , a12 (t) = a21 (t) = 0, a22 (t) = 1.

Let � = (�1; �2) 2 R
2, we must prove that there exists

� > 0 :
2X

i;j=1

aij (t) �i�j � � j�j2 .

Set � = max

�
1

d
; 1

�
with d is a strictly positive constant such that

('2 (t)� '1 (t)) � d.

Then P2
i;j=1 aij (t) �i�j = c@2x1 � @2x2 �

1

d2
�21 + �22

� � [�21 + �22 ]

� � j�j2 .
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3.2. Resolution of the problem in a reference domain

Lemma 3.2.3 The operator

B : H
1;2
0 (P�) �! L2 (P�)

v 7�! Bv = a (t; x1) @x1v

is compact.

Proof. P� has the "horn property" of Besov [9], so

@x1 : H
1;2
0 (P�) �! H

1

2
;1 (P�)

v 7�! @x1v

is continuous. Since P� is bounded, the canonical injection is compact from H
1

2
;1 (P�)

into L2 (P�) (see for instance [9]), where

H
1

2
;1 (P�) = L2

�
�; T � �;H1 (]0; 1[� ]0; b[)

�
\H

1

2

�
�; T � �;L2 (]0; 1[� ]0; b[)

�
.

For the complete de�nitions of the Hr;s Hilbertian Sobolev spaces see for instance [43].

Consider the composition

@x1 : H
1;2
0 (P�) ! H

1

2
;1 (P�) ! L2 (P�)

v 7! @x1v 7! @x1v,

then @x1 is a compact operator from H
1;2
0 (P�) into L

2 (P�). Since a (:; :) is a bounded

function, the operator a@x1 is also compact from H
1;2
0 (P�) into L

2 (P�).

Lemma 3.2.2 shows that the operator L1 = @t � c@2x1 � @2x2 is an isomorphism from

H
1;2
0 (P�) into L

2 (P�), on the other hand the operator a@x1 is compact, consequently,

L1 + a@x1 is a Fredholm operator from H
1;2
0 (P�) into L

2 (P�) : Thus the invertibility of

L1 + a@x1 follows from its injectivity.

Let us consider v 2 H1;2
0 (P�) a solution of

@tv + a@x1v � c@2x1v � @2x2v = 0 in P�.

We perform the inverse change of variable of  . Thus we set

u = v �  .
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3.2. Resolution of the problem in a reference domain

It turns out that u 2 H1;2
0 (Q�) and

@tu� @2x1u� @2x2u = 0 in Q�.

Using Green formula, we have
Z

Q�

�
@tu� @2x1u� @2x2u

�
u dt dx1dx2 =

Z

@Q�

�
1
2
juj2 �t � @x1u:u�x1 � @x2u:u�x2

�
d�

+

Z

Q�

�
j@x1uj

2 + j@x2uj
2�
dt dx1dx2

where �t, �x1, �x2 are the components of the unit outward normal vector at @Q�. All the

boundary integrals vanish except

Z

@Q�

juj2 �t d�. We have

Z

@Q�

juj2 �td� =

Z '2(�)

'1(�)

Z b

0

juj2 dx1dx2 +

Z '2(T��)

'1(T��)

Z b

0

juj2 dx1dx2.

Then
Z

Q�

�
@tu� @2x1u� @2x2u

�
u dt dx1dx2 = 1

2

Z '2(�)

'1(�)

R b
0
juj2 dx1dx2 +

1
2

Z '2(T��)

'1(T��)

R b
0
juj2 dx1dx2

+

Z

Q�

�
j@x1uj

2 + j@x2uj
2�
dt dx1dx2.

Consequently Z

Q�

�
@tu� @2x1u� @2x2u

�
u dt dx1dx2 = 0

yields the inequality Z

Q�

�
j@x1uj

2 + j@x2uj
2�
dt dx1dx2 � 0,

because
1

2

Z '2(�)

'1(�)

Z b

0

juj2 dx1dx2 +
1

2

Z '2(T��)

'1(T��)

Z b

0

juj2 dx1dx2 � 0.

This implies that j@x1uj
2 + j@x2uj

2 = 0 and consequently @2x1u = @2x2u = 0. Then, the

equation of (3.1.1) gives @tu = 0. Thus, u is constant: The boundary conditions imply

that u = 0 in Q�. This is the desired injectivity.

We shall need the following result in order to justify all the calculus of Section 3.3.

Lemma 3.2.4 The space

�
u 2 H4 (P�) ; u=@P�r�T�� = 0
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3.2. Resolution of the problem in a reference domain

is dense in the space
�
u 2 H1;2 (P�) ; u=@P�r�T�� = 0

	
.

Proof. Let �� the part of the boundary of P� where t = �. Lemma 2.1.2 of Chapter

2 shows that the space

�
u 2 H4 (P�) ; u=@P�r�T��r�� = 0

	

is dense in the space
�
u 2 H1;2 (P�) ; u=@P�r�T��r�� = 0

	
.

So, if

u 2
�
u 2 H1;2 (P�) ; u=@P�r�T��r�� = 0

	
,

then there exists a sequence

(un) 2
�
u 2 H4 (P�) ; u=@P�r�T��r�� = 0

	

such that

un * u weakly in H1;2 (P�) , n!1.

Let (en) a sequence of C
1 ([�; T � �]) such that

en (t) =

8
><
>:

1 if t � � +
1

n
,

0 if t � � +
1

2n
.

The sequence (enun) belongs to

�
u 2 H4 (P�) ; u=@P�r�T�� = 0

	
.

In addition

enun * u weakly in H1;2 (P�) , n!1.

Remark 3.2.1 In Lemma 3.2.4, we can replace P� by Q� with the help of the change of

variable  de�ned above.
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3.3. An uniform estimate

3.3 An uniform estimate

Now we shall prove an uniform estimate which will allow us to take limits in �n: We

denote un 2 H
1;2 (Q�n) the solution of Problem (3.1.1) corresponding to a second member

fn = f=Q�n 2 L
2 (Q�n) in

Q�n = 
�n � ]0; b[ ,

where


�n =
�
(t; x1) 2 R

2 : �n < t < T � �n; '1 (t) < x1 < '2 (t)
	
,

with (�n)n a sequence decreasing to zero.

Proposition 3.3.1 There exists a constant K1 independent of n such that

kunkH1;2(Q�n )
� K1 kfnkL2(Q�n ) � K1 kfkL2(Q) .

In order to prove Proposition 3.3.1, we need some preliminary results.

Lemma 3.3.1 Let ]�; �[ � R. There exists a constant K2 (independent of � and �) such

that
u(j)

2
L2(]�;�[)

� (� � �)2(2�j)K2

u(2)
2
L2(]�;�[)

, j = 0; 1,

for every u 2 H2 (]�; �[)\H1
0 (]�; �[), where u

(1) (respectively u(2)) is the �rst (respectively

the second) derivative of u on ]�; �[ and u(0) = u.

Proof. Consider the particular case where ]�; �[ = ]0; 1[ and let f an arbitrary �xed

element of L2 (0; 1). Then, the solution of the problem
8
>>><
>>>:

u00 = f

u (0) = 0,

u (1) = 0,

can be written in the form

u (y) =

Z 1

0

G(x; y)f(y)dy

where

G(x; y) =

8
<
:

x(y � 1) if x � y,

y(x� 1) if y � x.
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3.3. An uniform estimate

By using the Cauchy-Schwarz inequality, we obtain the following estimate

kuk2L2(]0;1[) � K2 kfk
2
L2(]0;1[)

and thus

kuk2L2(]0;1[) � K2 ku
00k
2
L2(]0;1[) .

By a similar argument, we obtain

ku0k
2
L2(]0;1[) � K2 ku

00k
2
L2(]0;1[)

from the following form of u0 (y)

u0 (y) =

Z y

0

f (x) dx�

Z 1

0

�Z x

0

f (s) ds

�
dx.

The general case follows from the previous particular case ]�; �[ = ]0; 1[ by an a¢ne

change of variable. Indeed, we de�ne the following a¢ne change of variable

[0; 1] ! [�; �]

x ! (1� x)� + x� = y

and we set

u (x) = v (y) .

Then if u 2 H2 (]0; 1[) \H1
0 (]0; 1[), v belongs to H

2 (]�; �[) \H1
0 (]�; �[). We have

ku0k2L2(0;1) =

Z 1

0

(u0)2 (x) dx

=

Z �

�

(v0)2 (y) (� � �)2
dy

� � �

=

Z �

�

(v0)2 (y) (� � �) dy

= (� � �) kv0k2L2(]�;�[) .

On the other hand, we have

ku00k2L2(0;1) =

Z 1

0

(u00)2 (x) dx

=

Z �

�

(v00)2 (y) (� � �)3 dy

= (� � �)3 kv00k2L2(]�;�[) .
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3.3. An uniform estimate

Using the inequality

ku0k2L2(0;1) � K2 ku
00k2L2(0;1)

of the previous case, we obtain the desired inequality

kv0k2L2(]�;�[) � K2 (� � �)2 kv00k2L2(]�;�[) .

The inequality

kvk2L2(]�;�[) � K2 (� � �)4 kv00k2L2(]�;�[)

can be obtained by a similar method.

Lemma 3.3.2 For every � > 0, chosen such that ('2 (t)� '1 (t)) � �, there exists a

constant C1 independent of n such that

@jx1un
2
L2(Q�n )

� C1�
2(2�j)

@2x1un
2
L2(Q�n )

, j = 0; 1.

Proof. Replacing in Lemma 3.3.1 u by un and ]�; �[ by ]'1 (t) ; '2 (t)[, for a �xed t,

we obtain

Z '2(t)

'1(t)

�
@jx1un

�2
dx1 � K2 ('2 (t)� '1 (t))

2(2�j)

Z '2(t)

'1(t)

�
@2x1un

�2
dx1

� K2�
2(2�j)

Z '2(t)

'1(t)

�
@jx1un

�2
dx1.

Integrating in the previous inequality with respect to t, then with respect to x2, we get

the desired result with C1 = K2.

Proof. of Proposition (3.3.1) Let us denote the inner product in L2 (Q�n) by h:; :i,

then we have

kfnk
2
L2(Q�n )

= h@tun � @2x1un � @2x2un; @tun � @2x1u� @2x2uni

= k@tunk
2
L2(Q�n )

+
@2x1un

2
L2(Q�n )

+
@2x2un

2
L2(Q�n )

�2h@tun; @
2
x1
uni � 2h@tun; @

2
x2
uni+ 2h@

2
x1
un; @

2
x2
uni.

1) Estimation of �2h@tun; @
2
x1
uni We have

@tun@
2
x1
un = @x1 (@tun@x1un)�

1
2
@t (@x1un)

2 .
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3.3. An uniform estimate

Then

�2h@tun; @
2
x1
uni = �2

Z

Q�n

@tun@
2
x1
undt dx1dx2

= �2

Z

Q�n

@x1 (@tun@x1un) dt dx1dx2

+

Z

Q�n

@t (@x1un)
2
dt dx1dx2

=

Z

@Q�n

�
(@x1un)

2
�t � 2@tun@x1un�x1

�
d�,

where �t; �x1 ; �x2 are the components of the unit outward normal vector at @Q�n. We shall

rewrite the boundary integral making use of the boundary conditions. On the parts of

the boundary of Q�n where t = �n, x2 = 0 and x2 = b we have un = 0 and consequently

@x1un = 0. The correponding boundary integral vanishes. On the part of the boundary

where t = T � �n, we have �x1 = 0 and �t = 1. Accordingly the correponding boundary

integral

A =

Z b

0

Z '2(T��n)

'1(T��n)

(@x1un)
2
dx1dx2

is nonnegative. On the part of the boundary where x1 = 'i (t), i = 1; 2, we have un = 0.

Di¤erentiating with respect to t we obtain

@tun = �'
0
i (t) @x1un.

Consequently, the correponding boundary integral is

�

Z b

0

Z T��n

�n

'01 (t) [@x1un (t; '1 (t) ; x2)]
2
dt dx2

+

Z b

0

Z T��n

�n

'02 (t) [@x1un (t; '2 (t) ; x2)]
2
dt dx2.

By setting

I1 = �

Z b

0

Z T��n

�n

'01 (t) [@x1un (t; '1 (t) ; x2)]
2
dt dx2

I2 =

Z b

0

Z T��n

�n

'02 (t) [@x1un (t; '2 (t) ; x2)]
2
dt dx2,

we have

�2h@tun; @
2
x1
uni � � jI1j � jI2j . (3.3.1)
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3.3. An uniform estimate

Lemma 3.3.3 There exists a constant K4 independent of n such that

jIij � K4�
@2x1un

2
L2(Q�n )

, i = 1; 2.

Proof. We convert the boundary integral I1 into a surface integral by setting

[@x1un (t; '1 (t) ; x2)]
2 = �

'2 (t)� x1

'2 (t)� '1 (t)
[@x1un (t; x1; x2)]

2

����
x1='2(t)

x1='1(t)

= �

Z '2(t)

'1(t)

@x1

�
'2 (t)� x1

'2 (t)� '1 (t)
[@x1un]

2

�
dx1

= �2

Z '2(t)

'1(t)

'2 (t)� x1

'2 (t)� '1 (t)
@x1un:@

2
x1
un dx1

+

Z '2(t)

'1(t)

1

'2 (t)� '1 (t)
[@x1un]

2
dx1.

Then, we have

I1 = �

Z b

0

Z T��n

�n

'01 (t) [@x1un (t; '1 (t) ; x2)]
2
dt dx2

= �

Z

Q�n

'01 (t)

'2 (t)� '1 (t)
(@x1un)

2
dt dx1dx2

+2

Z

Q�n

'2 (t)� x1

'2 (t)� '1 (t)
'01 (t) (@x1un)

�
@2x1un

�
dt dx1dx2.

Thanks to Lemma 3.3.2, we can write

Z '2(t)

'1(t)

[@x1un]
2
dx1 � K2 ['2 (t)� '1 (t)]

2

Z '2(t)

'1(t)

�
@2x1un

�2
dx1.

Therefore

Z '2(t)

'1(t)

[@x1un]
2 j'01j

'2 � '1
dx1 � K2

2 j'
0
1j ['2 � '1]

Z '2(t)

'1(t)

�
@2x1un

�2
dx1,

consequently

jI1j � K2

Z

Q�n

j'01j ['2 � '1]
�
@2x1un

�2
dt dx1dx2

+2

Z

Q�n

j'01j j@x1unj
��@2x1un

�� dt dx1dx2,

since

����
'2 (t)� x1

'2 (t)� '1 (t)

���� � 1. Using the inequality

2 j'01@x1unj
��@2x1un

�� � �
�
@2x1un

�2
+
1

�
('01)

2 (@x1un)
2
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for all � > 0, we obtain

jI1j � K2

Z

Q�n

j'01j ['2 � '1]
�
@2x1un

�2
dt dx1dx2

+

Z

Q�n

�
�
@2x1un

�2
dt dx1dx2 +

1

�

Z

Q�n

('01)
2 (@x1un)

2
dt dx1dx2.

Lemma 3.3.2 yields

1

�

Z

Q�n

('01)
2
(@x1un)

2
dt dx1dx2 � K2

1

�

Z

Q�n

('01)
2
['2 � '1]

2 �
@2x1un

�2
dt dx1dx2.

Thus,

jI1j � K2

Z

Q�n

�
j'01j j'2 � '1j+

1

�
('01)

2 j'2 � '1j
2

� �
@2x1un

�2
dt dx1dx2

+

Z

Q�n

�
�
@2x1un

�2
dt dx1dx2

� (2K2 + 1) �

Z

Q�n

�
@2x1un

�2
dt dx1dx2,

since j'01 ('2 � '1)j � �. Finally, taking K4 = (2K
2
2 + 1), we obtain

jI1j � K4�
@2x1un


L2(Q�n )

.

The inequality

jI2j � K4�
@2x1un


L2(Q�n )

,

can be proved by a similar method.

This ends the proof of Lemma 3.3.3.

2) Estimation of �2h@tun; @
2
x2
uni: We have

@tun@
2
x2
un = @x2 (@tun@x2un)�

1
2
@t (@x2un)

2 .

Then

�2h@tun; @
2
x2
uni = �2

Z

Q�n

@tun@
2
x2
undt dx1dx2

= �2

Z

Q�n

@x2 (@tun@x2un) dt dx1dx2

+

Z

Q�n

@t (@x2un)
2
dt dx1dx2

=

Z

@Q�n

�
(@x2un)

2
�t � 2@tun@x2un�x2

�
d�.
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3.3. An uniform estimate

Using the Cauchy-Dirichlet boundary conditions, we see that the above boundary integral

is nonnegative. Consequently

�2


@tun; @

2
x2
un
�
� 0. (3.3.2)

3) Estimation of 2h@2x1un; @
2
x2
uni: We have

@2x1un:@
2
x2
un = @x1

�
@x1un:@

2
x2
un
�
� @x2 (@x1un:@x1@x2un) + (@x1@x2un)

2 .

Then

2h@2x1un; @
2
x2
uni = 2

Z

Q�n

@2x1un:@
2
x2
undt dx1dx2

= 2

Z

Q�n

@x1
�
@x1un:@

2
x2
un
�
dt dx1dx2

�2

Z

Q�n

@x2 (@x1un:@x1@x2un) dt dx1dx2

+2

Z

Q�n

(@x1@x2un)
2
dt dx1dx2

= 2

Z

Q�n

(@x1@x2un)
2
dt dx1dx2

+2

Z

@Q�n

�
@x1un@

2
x2
un�x1 � @x1un:@x1@x2un�x2

�
d�.

Thanks to the boundary conditions, we obtain

2h@2x1un; @
2
x2
uni � 2 k@x1@x2unk

2
L2(Q�n )

. (3.3.3)

Then, summing up the estimates (3.3.1), (3.3.2) and (3.3.3) of the inner products, and

making use of Lemma 3.3.3, we then obtain

kfnk
2
L2(Q�n )

� k@tunk
2
L2(Q�n )

+
@2x1un

2
L2(Q�n )

+
@2x2un

2
L2(Q�n )

� jI1j � jI2j+ 2 k@x1@x2unk
2
L2(Q�n )

� k@tunk
2
L2(Q�n )

+ (1� 2K4�)
@2x1un

2
L2(Q�n )

+
@2x2un

2
L2(Q�n )

+ 2 k@x1@x2unk
2
L2(Q�n )

.

Then, it is su¢cient to choose � such that (1� 2K4�) > 0 to get a constant K0 > 0

independent of n such that

kfnkL2(Q�n ) � K0 kunkH1;2(Q�n )
,

55
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and since

kfnkL2(Q�n ) � kfkL2(Q) ,

there exists a constant K1 > 0, independent of n satisfying

kunkH1;2(Q�n )
� K1 kfnkL2(Q�n ) � K1 kfkL2(Q) .

This completes the proof of Proposition 3.3.1.

3.4 Passage to the limit

We are now able to prove the main result of this work

Theorem 3.4.1 We assume that '1 and '2 ful�l the conditions (3.1.2) and (3.1.3), then

the heat operator

L = @t � @2x1 � @2x2

is an isomorphism from H
1;2
0 (Q) into L2 (Q).

Proof. Choose a sequence Q�n n = 1; 2; ::: of reference domains (see Section 3.2) such

that Q�n � Q with (�n) a sequence decreasing to 0, as n!1. Then we have Q�n ! Q,

as n!1.

Consider the solution u�n 2 H
1;2 (Q�n) of the Cauchy-Dirichlet problem

8
>>><
>>>:

@tu�n � @2x1u�n � @2x2u�n = f in Q�n

u�n=@Q��T��n = 0,

with �T��n is the part of the boundary of Q�n where t = T � �n. Such a solution u�n

exists by Theorem 3.2.1. Let gu�n the 0-extension of u�n to Q: In virtue of Proposition
3.3.1, we know that there exists a constant C such that

kgu�nkL2(Q) +
]@tu�n


L2(Q)

+
2X

i;j=0
1�i+j�2


^@
j
x1@

j
x2u�n


L2(Q)

� C kfkL2(Q) .
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3.4. Passage to the limit

This means thatgu�n, ]@tu�n ; ^@
j
x1@

j
x2u�n for 1 � i+ j � 2 are bounded functions in L2 (Q).

So for a suitable increasing sequence of integers nk, k = 1; 2; :::, there exist functions

u, v and vi;j 1 � i+ j � 2

in L2 (Q) such that

gu�nk * u weakly in L2 (Q) , k !1

@̂tu�nk * v weakly in L2 (Q) , k !1

^@
j
x1@

j
x2u�n * vi;j weakly in L2 (Q) , k !1,1 � i+ j � 2.

Let then � 2 D (Q). For nk large enough we have supp � � Q�nk . Thus

hv1;0; �iD0(Q)�D(Q) = limnk�!1

R
Q
@̂x1u�nk :� dtdx1dx2

= limnk�!1

R
Q�nk

@x1u�nk :� dtdx1dx2

= limnk�!1



@x1u�nk ; �

�
D0(Q�nk )�D(Q�nk )

= � limnk�!1



u�nk ; @x1�

�
D0(Q�nk )�D(Q�nk )

= � limnk�!1

R
Q
gu�nk :@x1� dtdx1dx2

= � limnk�!1



gu�nk ; @x1�

�
D0(Q)�D(Q)

= �hu; @x1�iD0(Q)�D(Q)

= h@x1u; �iD0(Q)�D(Q) .

Then, v1;0 = @x1u in D
0 (Q) and so in L2 (Q). By a similar manner, we prove that

v = @tu, vi;j = @ix1@
j
x2
u, 1 � i+ j � 2

in the sense of distributions in Q and so in L2 (Q). Finally, u 2 H1;2 (Q). On the other

hand,

@tu�nk � @2x1u�nk � @2x2u�nk = fnk = f=Q�nk

and

@̂tu�nk � @̂2x1u�nk � @̂2x2u�nk =
ffnk .

But

ffnk �! f in L2 (Q)

57



3.4. Passage to the limit

and

@̂tu�nk � @̂2x1u�nk � @̂2x2u�nk * @tu� @2x1u� @2x2u.

So, we have

@tu� @2x1u� @2x2u = f in Q

On the hand, the solution u satis�es the boundary conditions u=@Q��T = 0 since

8n 2 N; u=Q�n = u�n.

This proves the existence of a solution to Problem 3.1.1.

Notice that we have the estimate

kuk2H1:2(Q) � K kfk2L2(Q) ,

which implies the uniqueness of the solution.

Remark 3.4.1 The result given in Theorem 3.4.1 holds true only under the assumption

(3.1.2) (respectively, (3.1.3)), if '1 (0) = '2 (0) and '1 (T ) < '2 (T ) (respectively, if

'1 (0) < '2 (0) and '1 (T ) = '2 (T )).

Remark 3.4.2 Note that this work may be extended at least in the following directions:

1. The non-regular domain Q may be replaced by a non-cylindrical domain (conical

domain, for example).

2. The function f on the right-hand side of the equation of Problem (3.1.1), may be

taken in Lp (Q), where p 2 ]1;1[ : The method used here does not seem to be appropriate

for the space Lp (Q) when p 6= 2.

3. The operator L may be replaced by a high order operator.
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