
CHAPTER

2 Preliminaries

In this chapter, we collect some basic de�nitions and results that we need to develop

further arguments in the following chapters.

2.1 Function spaces

2.1.1 Anisotropic Sobolev spaces

We introduce the so-called anisotropic Sobolev spaces Hr;s built on the Lebesgue space of

square integrable functions L2. These function spaces are the naturel ones adopted in the

study of parabolic equations and are di¤erent from those in the study of elliptic equations

since the space variable x and time variable t play di¤erent roles in parabolic equations.

We recall the following de�nition of anisotropic Sobolev spaces (see [43])
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where bu is the Fourier transform of u and r, s are two non-negative numbers. We put

Hr;s (
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u=
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, (2.1.1)

with 
 is an open subset of R2.

Now, we give some basic properties of the anisotropic Sobolev space H1;2.

The following result for the symmetric Sobolev spaceH1, may be extended to anisotropic

Sobolev space H1;2
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2.1. Function spaces

Theorem 2.1.1 [19]. Let Q be a bounded open set with Lipschitz boundary and Q1, Q2

two open subsets of Q with Lipschitz boundaries such that

Q1 [Q2 = Q,

Q1 \Q2 = ;.

Set � = @Q1 \ @Q2. Let u1 2 H
1 (Q1), u2 2 H

1 (Q2) satisfying

u1 = u2 on �,

then the function u de�ned by

u =

8
<
:
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u2 in Q2,

belongs to H1 (Q).

Proof. It is clear that u 2 L2 (Q). For an arbitrary i 2 f1; 2; :::; ng and a �xed
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because ' vanishes on @Qkn�, here �
(k) is the outward normal vector on @Qk. So, since
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The boundary integral vanish, so we obtain
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belongs to L2 (Qk), we conclude that
@u

@xi
2 L2 (Q).
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2.1. Function spaces

Lemma 2.1.1 If u 2 H1;2 (]0; T [� ]0; 1[), then u=t=0 2 H1 (0) ; u=x=0 2 H
3

4 (1) and

u=x=1 2 H
3

4 (2), where 0 = f0g � ]0; 1[ ; 1 = ]0; T [� f0g and 2 = ]0; T [� f1g :

The above lemma is a particular case of [43, Vol. 2, Theorem 2.1].

Lemma 2.1.2 Let T and b two positive numbers. Then, the space

D
�
]0; T [ ;H4 (]0; 1[� ]0; b[) \H1

0 (]0; 1[� ]0; b[)
�
,

(see [43, Vol. 2, p.13]) is dense in the subspace of H1;2 (]0; T [� ]0; 1[� ]0; b[) de�ned by

u = 0 on ]0; T [� f0g � ]0; b[ and ]0; T [� f1g � ]0; b[ :

It is a particular case of [43, Vol. 1, Theorem 2.1].

2.1.2 Interpolation spaces

In this subsection we only recall concepts of interpolation theory that are needed for our

purposes.

Let X, Y be two Hilbert spaces with

X � Y continuously.

There are various equivalent methods that allow us to build spaces

[X;Y ]� 0 < � < 1,

"intermediate" between X and Y . We give here one of the usual methods, namely, that

of Lions-Peetre [42].

De�nition 2.1.1 The space [X; Y ]� 0 < � < 1, is a sub-space of Y consisting of elements

a which can be written in the form

a =

Z
1

0

u (t)
dt

t
(2.1.2)

with

t�u (t) 2 L2
�
(X) , t��1u (t) 2 L2

�
(Y ) . (2.1.3)

32



2.1. Function spaces

This space is endowed with the norm
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the inf is taken with respect to u verifying 2.1.2 and 2.1.3.

Here L2
�
denotes the space of square integrable functions f : (0;+1) ! V with the

Haar measure dt=t.

Example 2.1.1 Hr;s (
) can also be de�ned as a real interpolation space betweenHr=(1��);s=(1��) (
)

and L2 (
), � 2 ]0; 1[, (see [67])

Hr;s (
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�
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)

�
�
. (2.1.4)

In this work, we consider the case s = 2r, � = 1� r,

Hr;2r (
) =
�
H1;2 (
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)

�
1�r

8r 2 ]0; 1[ . (2.1.5)

The main features of the spaces Hr;2r available to second-order parabolic equations is that

smoothness with respect to spatial variables is twice as high with respect to time. In other

words, the weak derivatives with respect to t does not exceed half of the highest order of

weak derivatives with respect to x. The space Hr;2r (
) is well de�ned by Relationship

(2.1.5) because the right hand side term of (2.1.5) is well de�ned as an interpolation space

between two well de�ned spaces H1;2 (
) and L2 (
).

Putting s = 2r in Relationship (2.1.1), we obtain
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�
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. (2.1.6)

This relation also give a complete de�nition of the space Hr;2r (
), so it is important to

know if the space given by Relationship (2.1.5) is the same as that given by Relationship

(2.1.6). The answer to this question depends on the geometry of 
.

If 
 has the continuation property with respect to the space H1;2 (
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If 
 has not this property, then the spaces may be di¤erent. However, we have
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2.1. Function spaces

see [56]. The continuation property is called "the horn property" of Besov [9], and it

corresponds to the cone property for the symmetric Sobolev spaces.

De�nition 2.1.2 Let 
 be an open subset of Rn. 
 is said to have the "horn property"

of Besov if each of their points can be reached from within as the vertex of some horn. By

a "horn" is meant a set

R =
�
�ih < xkii < �ih; i = 1; 2; :::; n; 0 < h < 1

	

0 < �i < �i <1; 0 < ki <1; i = 1; 2; :::; n, see Fig. 4.

Fig. 4: A horn in the plane.

Now, we present some results interpolation spaces.

Theorem 2.1.2 [67]. Let A0, A1 be two Hilbert spaces with

A0 � A1 continuously.

Then
�
L2 (A0) ; L

2 (A1)
�
�
= L2 ([A0; A1]�) ,

0 < � < 1.

A direct consequence of Theoerem 2.1.2 is

Corollary 2.1.1 For each 0 � r � 1

[L2 (R+;H
2 (
)) ; L2 (R+;H

1 (
))]1�r = L2
�
R+; [H

2 (
) ; H1 (
)]1�r
�

= L2 (R+;H
1+r (
)) ,

with 
 an open bounded set of Rn.

34



2.1. Function spaces

2.1.3 The spaces H
1

2 ; H
1

2

0
and H

1

2

00

We will need in Chapter 5 some particular Sobolev spaces, namely, Hr
0 (
), 0 � r � 1.

We recall the following de�nition of the Sobolev spaces H
1

2 (R) (see [43])

H
1

2 (R) =
n
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o
,

where bu is the Fourier transform of u.

Hereafter a caracterization of H
1

2 (R).

Theorem 2.1.3
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2
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Hereafter a caracterization of H
1

2

00(
) that we can �nd in [43].

Theorem 2.1.4
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(
u 2 H
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where eu is the 0-extension of u and d(x) is the distance of x to the origin.
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2.2. Results on some parabolic model problems

2.2 Results on some parabolic model problems

Many results of the theory of parabolic equations for smooth domains are not true if

the boundary of the domain is not regular. On the other hand, the methods which were

developed for domains with smooth boundaries cannot be directly applied to domains

with irregularities. In this section, we give results on some parabolic model problems,

both in the regular and irregular cases.

Problem 2.2.1 Consider the following parabolic boundary problem
8
>>><
>>>:

@tu� a @2xu� b @2yu� 2c @x@yu = f , (t; x; y) 2 ]0; T [� 


u (0; x) = 0, (x; y) 2 


u (t; �) = 0, (t; �) 2 ]0; T [� �

(2.2.1)

where T is a �nite positive number and 
 is any rectangle of R2. Here f 2 L2 (Q) and

the coe¢cients a, b and c real-valued functions de�ned on [0; T ], Lipschitz continuous on

]0; T [.

We have the following result

Theorem 2.2.1 [11, Theorem 7.22]. For each f 2 L2 (Q), there exists a unique solution

u 2 H1;2 (Q) of Problem (2.2.1).

Proof. Set X = L2 (0; T ) and u (t) = u (t; :; :), then Problem (2.2.1) is equivalent to

the following abstract Cauchy problem in X
8
<
:

u0 (t) + L (t) u (t) = f (t) , t 2 (0; T ) ,

u (0) = 0,
(2.2.2)

where the family (L (t))t2[0;T ] is de�ned by

D (L (t)) = H2 (
) \H1
0 (
) ,

(L (t) ) (x; y) = �a @2x � b @2y � 2c @x@y for a.e. t 2 (0; T ) .

Observe that D (L (t)) = X. We obtain then the new abstract form of the previous

problem, mainly

Au+Bu = f ,
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2.2. Results on some parabolic model problems

where

D (A) = fu 2 L2 (Q) : u0 2 L2 (Q) and u (0) = 0g

(Au) (t) = u0 (t) , t 2 [0; 1] .

and

D (B) = fu 2 L2 (Q) : u 2 D (L (t)) , a.e. t 2 (0; T )g

(Bu) (t) = L (t) u (t) , t 2 [0; T ] ,

Now we are in position to apply the result of the sums of operators, see Chapter 1,

subsection 1.3.2. For this purpose we must verify the assumptions of Theorem 1.3.2. The

spectral properties of A and B are as follows.

Proposition 2.2.1 A and B are linear closed operators and their domains are dense in

L2 (Q). Moreover, they satisfy Assumptions (1.3.5), (1.3.6) and (1.3.7).

Proof. The proof of this result can be found in [11, Theorem 7.22].

In addition A and B satisfy Labbas-Terreni condition (1.3.8) with � = � = 0. This

ends the proof of Theorem (2.2.1).

Remark 2.2.1 In the case of a regular domain 
, the corresponding result can be found

in [43, Vol.2].

Problem 2.2.2 Let Q be the rectangle ]0; T [� ]0; 1[, f 2 L2 (Q) and  2 H1 (0). Con-

sider the following boundary value problem
8
>>><
>>>:

@tu� @2xu = f in Q

u=0 =  

@xu+ �i (t) u=i = 0, i = 1, 2,

(2.2.3)

where 0 = f0g� ]0; 1[, 1 = ]0; T [�f0g and 2 = ]0; T [�f1g. The coe¢cients �i (t) are

smooth functions.

Proposition 2.2.2 [43, Theorem 4.3, Vol. 2]. Problem (2.2.3) admits a (unique) solu-

tion u 2 H1;2 (Q).

Remark 2.2.2 In the application of [43, Theorem 4.3, Vol.2], we can observe that there

are no compatibility conditions to satisfy because @x is only in L
2 (0).
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2.2. Results on some parabolic model problems

Problem 2.2.3 Let 
0 be an open bounded set of R
n with boundary � and Q0 the cylinder

R+�
0 with lateral boundary � = R+� �. We assume that 
0 is convex or of class C
2.

Fig. 5 :The cylinder Q0 =R+ � 
0

Consider in Q0 the following boundary value problem8
>>><
>>>:

@tu��u = 0 in R+ � 
0

u = 0 on �

u (0; x) = u0 (x) , x 2 
0.

(2.2.4)

We will need the following well known result (cf. Lions and Magenes [43] and Brezis [10])

which gives the regularity of the solution u of (2.2.4) in terms of the regularity of the

initial data u0.

Theorem 2.2.2 1) For given u0 in H
1
0 (
0), Problem (2.2.4) has a unique solution u in

H1;2 (Q0) de�ned by H
1;2 (Q0) = L2 (R+;H

2 (
0)) \H
1 (R+;L

2 (
0)). Moreover,
Z T

0

k@tuk
2
L2(
0)

dt+
1

2
kruk2L2(
0) =

1

2
kru0k

2
L2(
0)

8T > 0.

2) For given u0 in L
2 (
0), Problem (2.2.4) has a unique weak solution

u 2 L2
�
R+;H

1
0 (
0)

�
\H1

�
R+;H

�1 (
0)
�
\ L1

�
R+;L

2 (
0)
�
.
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2.2. Results on some parabolic model problems

Moreover
1

2
kuk2L2(
0) +

Z T

0

kruk2L2(
0) dt =
1

2
ku0k

2
L2(
0)

8T > 0.
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