
CHAPTER

1 Parabolic problems in

non-cylindrical domains

1.1 Historical notes

The history of boundary value problems for parabolic equations in non-cylindrical domains

starts at the beginning of the 20th century with the pioneering work of Gevrey [18], in

which, existence results for second order parabolic equations for a su¢ciently small interval

of time t have been established.

The Gevrey-type results were then followed by I. G. Petrovskii [51] in 1934 and A. N.

Tikhonov [66] in 1937 and others from the beginning of the �fties until now.

I. G. Petrovskii was the �rst to study parabolic equations in non-cylindrical domains

with characteristic points. He studied in [52] the question of regularity of boundary

points for a plan domain Q bounded by the lines t = 0 and t = T and the curves

x =  1 (t) and x =  2 (t), with  1 (t) �  2 (t) for the equation of the heat conduction

and he found necessary and su¢cient conditions on the tangency order of the boundary

hypersurface with a plane t = const for solvability of the Dirichlet problem for a such

equation. Petrovskii constructed also examples to show that a point of the boundary can

be regular for the equation ut = uxx and non-regular for the equation ut = a2uxx, where

a is a positive constant such that a 6= 1. These results have important applications in

probability theory.
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Later on, these results were generalized by Landis [38] and Evans and Gariepy [15] to

the case of domains Q � Rnt;x with boundaries of arbitrary structures. In [66] Tikhonov

studied the equation of heat conduction in a cylindrical domain G = 
 � (0; T ), where


 � R
n
x and 0 < t < T . He showed that a point (x0; t0) 2 @
 � [0; T ] is regular

for this equation if and only if the point x0 is regular for the Laplace equation in 
.

The regularity of the points of the boundary for second order parabolic equations under

various assumptions on their coe¢cients is studied in [53], [14], [36], [37], and [45]. The

same question for second order degenerate parabolic equations, is considered in [49] and

[50] where an extensive list of references can also be found.

At the beginnig of the �fties, the study of parabolic equations in non-cylindrical do-

mains was initiated by Fichera [16], who considered a class of second order equations, then

followed by Lions [41], who proved existence and uniqueness of weak solutions for a large

class of higher order equations and systems, but his class of domains is much smaller,

as he only considers domains which can be written locally as the graph of a C1 func-

tion. The solvability of boundary-value problems for parabolic equations in non-smooth

domains has been the subject of systematic studies since the 1960s (see [28] and the ref-

erences therein). In the late 1950s and early 1960 Friedmann [17], Solonnikov [65] and

others obtained a priori estimates for the heat equation, and for much general parabolic

equations and systems in bounded non-cylindrical domains in higher dimensions. These

results are analogous to Schauder�s theorems on a priori estimates for solutions of linear

elliptic equations. The solvability of the �rst boundary-value problem for higher-order

parabolic equations in Sobolev spaces was studied by Mikhailov [47]. The case of gen-

eral boundary-value problems in non-cylindrical domains of special form was considered

by Kondrat�ev [27], where asymptotic expansion of the solutions in the neighbourhood

of non-regular points were obtained. Boundary value problems for second order par-

abolic equations in angular domains or in domains with corners or edges are studied in

[63], [39] [6] and [7]. Since the beginning of the seventies, many classical methods have

been successfully applied for solving parabolic problems in non-cylindrical domains and

we can recognize at least �ve powerful methods: Elliptic regularization method, domain
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1.1. Historical notes

decomposition method, layer potential method, sum of operators method and Rothe�s

method. Equations that are 2m-parabolic in a plane non-smooth domain are considered

by Baderko [8] and by Sadallah in [57], [58], who obtained some results on conditions for

the smoothness of the solution near singular points of the boundary by using the domain

decomposition method. This method is based on the approximation of the non-smooth

domain by a sequence of sub-domains which can be transformed into smooth domains.

The number of papers devoted to parabolic equations in non-cylindrical domains in-

creased considerably from 90�s. This was largely due to the discovery of new applications

and to the successful adaptation of some classical methods to solve them. One of the

powerful methods which has been successfully applied for solving parabolic problems in

non-cylindrical domains is the operators sum method. Let us mention, for example, the

works [32], [33], [31], by R. Labbas, A. Medeghri and B.-K. Sadallah where some fainly

new results can be found. The method of layer potential is used by Hofmann and Lewis

[22] for the solvability of the heat equation in non-cylindrical domains satisfying some

conditions of Lipschitz�s type. Rothe�s classical method was extended so that it can be

used to solve some linear parabolic boundary value problems in non-cylindrical domains,

see [12] and [29]. Yu. A. Alkhutov considered in [2] the Dirichlet problem for the heat

equation in bounded and unbounded domains of paraboloid type with isolated character-

istic points at the boundary. He found necessary and su¢cient conditions in terms of the

weight ensuring the unique solubility of this problem in weighted Sobolev Lp-spaces. In

particular, he established in [3] a criterion for the solubility of the problem in the classical

Sobolev spaces in the case when the domain is a ball.

We do not claim that our survey is exhaustive, since many problems of mechanics

and physics lead directly to parabolic problems in non-smooth domains and a great many

papers have been devoted to the study of parabolic equations in speci�c non-cylindrical

domains. A systematic presentation of some questions of the theory of parabolic equations

in non-smooth domains can be found in [28] and [40].
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1.2 Physical applications

Many important applied problems reduce to the study of boundary-value problems for

partial di¤erential equations in domains with non-regular points on the boundary. Such

questions have been discussed extensively in the literature. One of the most important

equations of mathematical physics is the heat equation. This equation in two independent

variables arises in problems of the plane theory of evolution equations. General second-

order parabolic equations set in UT = U � (0; T ) for some �xed time T > 0, describe in

physical applications the time-evolution of the density of some quantity u, say a chemical

concentration, within the region U .

In this section, we give some physical applications for the heat equation in the case of

a time-varying domain.

Example 1.2.1 Consider the following di¤usion equation in one space dimension

8
<

:
@tu� @2xu = f 2 Lp (
) ,

u=@p
 = 0.
(1.2.1)

The problem is set in a non-rectangular domain. More precisely, the standard domain we

consider is the curvilinear triangle 
 :


 =
�
(t; x) 2 R2 : t 2 ]0; 1[ ; 0 < x < t� = ' (t)

	
; � � 1=2.

The parabolic boundary @p
 of 
 is de�ned by

@p
 = (�1 [ �3) n�2

with

�1 = f(t; 0) 2 R
2 : 0 < t < 1g ,

�2 = f(1; x) 2 R
2 : 0 < x < 1g ,

�3 = f(t; t
�) 2 R2 : 0 < t < 1g ,
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1.2. Physical applications

(see Fig. 1).

Fig.1: The time-varying domain 
.

When f = 0 and the variables (t; x) lie in a rectangular domain, Equation (1.2.1) rep-

resents Fick�s second law which modelizes, for instance, the concentration (of atoms)

u (t; x)at time t in a position x, (like the carburization of steel) in a homogenous system

(pure metal or any alloy). Besides being interesting in itself, Problem (1.2.1) governs,

for example, the simpli�ed di¤usion equation of neutrons in the deviation situations from

their trajectories. It is also the modelization of the lateral di¤usion of a pollutant in a

�ow of river with variable width.

Example 1.2.2 Consider the same di¤usion equation subject to Robin type boundary

conditions instead of Dirichlet boundary conditions

8
<

:
@tu� @2xu = f 2 Lp (
) ,

@xu+ �i (t) u=�1[�2 = 0, i = 1, 2,
(1.2.2)

with

�1 = f(t; 0) 2 R
2 : 0 < t < 1g ,

�2 = f(t; t
�) 2 R2 : 0 < t < 1g , � � 1=2.
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Such boundary conditions also occur in practical applications. Here, Problem (1.2.2) can

also governs lateral di¤usion of a pollutant in a �ow of river with variable width and the

boundary lateral conditions mean that the �ux of di¤usion @xu (t; x) is proportionnal to

the density of u (t; x) at each time t .

1.3 Some methods of resolution

In this section, we describe two powerful methods which have been successfully applied

for solving parabolic problems in non-cylindrical domains, namely, the Rothe�s method

and the sum of operators method.

1.3.1 Rothe�s method

One of the classical methods which has been successfully applied for solving parabolic

problems in non-cylindrical domains is the so-called method of lines, where the derivatives

with respect to one variable are replaced by di¤erence quotients which �nally leads to
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systems of di¤erential equations for functions of the remaining variables. If we replace

the time derivative @tu for the parabolic equation

@tu (x; t) + A (x; t) u (x; t) = f (x; t) ; (1.3.1)

in the cylindrical domain Q = 
�]0; T [, where 
 � RN and A is an elliptic operator, then

this method is called Rothe�s method or time discretization. Using time discretization,

evolution problem (1.3.1) is approximated by corresponding elliptic problem by means of

which an approximate solution for the original evolution problem is constructed. Indeed,

we devide the interval ]0; T [ into n subintervals of the length h = T=n and denote

zk = zk (x) = u (x; kh) ; x 2 
; k = 1; 2; :::; n:

Then we can consider, after replacing the derivative @tu for t 2 [(k � 1)h; kh] by

(zk (x)� zk�1 (x)) =h,

the following system of n di¤erential equations in x for the unknown functions zk (x) ;

k = 1; 2; :::; n :
zk (x)� zk�1 (x)

h
� A (x; kh) = f (x; kh) ; x 2 
; (1.3.2)

where we start with some given initial condition z0 (x) = u0 (x) (and boundary conditions).

The solutions zk (x) of (1.3.2) are solutions of (1.3.1) at the discrete values t = kh. Using

these functions we can construct the Rothe function un (x; t) which is de�ned in the

interval ]0; T [ by

un (x; t) = zk�1 (x) +
t� (k � 1)h

h
(zk (x)� zk�1 (x)) ; t 2 [(k � 1)h; kh] , k = 1; 2; :::; n:

Note that un (x; t) is a piecewise linear function of t, and it can be shown that un (x; t)

converges (in some appropriate sense) to the solution of (1.3.1) as n �!1.

Rothe�s method was introduced by the German mathematician E. Rothe in the year

1930 for solving second order linear parabolic equations with one space variable (see [55]).

Since Rothe�s classical paper [55] this method has been successfully applied to various

problems: linear as well as nonlinear, parabolic and hyperbolic too. Linear equations of
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higher orders were considered by Ladyµzenskaja [34]. J. Kacur in [24], [25] has investigated

non-linear evolution equations of parabolic type. For hyperbolic equations see e.g. [46]

and [68].

We note that the method of Rothe in all works just mentioned was considered only for

cylindrical domains. However, Rothe�s classical method was extended so that it can be

used to solve some linear parabolic boundary value problems in non-cylindrical domains.

Let us mention, for example, J. L. Lions [44], who used a rather abstract approach and

the papers [12], [29] where some fainly new results can be found. Hereafter we will give

an example (see [29]) which illustrate this extension to non-cylindrical domains. Let us

consider the following problem

8
<

:
@tu��u = f (x; t) in Q

u = 0 on @Q n 
T
(1.3.3)

in the non-cylindrical domain

Q = f(x; t) : x = (x1; x2; :::xN) 2 
t; 0 < t < Tg

where (0; T ) is a �nite interval, 
t 2 C0;1
�
R
N
�
(here, C0;1

�
R
N
�
is a set of all bounded

domains in RN , whose boundary can be locally described by a function from C0;1 (K),

where K � RN�1 is a cube for every t; s 2 (0; T ), t < s

; 6= 
0 � 
t � 
s � 
T
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(see Fig. 3).

Fig. 3: The non-cylindrical

domain Q.

By using an extension of the Rothe�s method described above, the following result is

proved in [29]

Theorem 1.3.1 Assuming that there exists a function

F 2 V 1
�
0; T ;L2 (
T )

�
\ C

�
0; T ;L2 (
T )

�

such that

F (x; t) = f (x; t) for all (x; t) 2 Q

with

V 1 (0; T ;H) =

(

w (t) : sup
D

JX

k=1

kw (tk)� w (tk�1)kH <1

)

where the supremum is taken over all decompositions D = ft1; t2; :::; tJg of (0; T ). Then

Problem (1.3.3) has exactely one weak solution, i.e. a function which is a weak limit of

Rothe�s functions un (x; t) in the space L
2 (0; T ;VT ), where

VT =
�
v 2 H1;2 (
T ) : v = 0 on @
T

	
= H1;2

0 (
T )

with

H1;2 (
T ) =
�
u 2 L2 (
T ) : @tu; @

i
x1
@jx2 :::@

k
xN
u 2 L2 (
T ) ; 1 � i+ j + k � 2

	
:
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1.3.2 Sum of operators method

In this subsection, we recall the main features of the A+B method, and give an example

which shows how this method can be applied to parabolic equations in non-cylindrical

domains.

In 1975, P. Grisvard in collaboration with G. Da Prato [11] developed an abstract

method (the sum of operators� method) to study the equation

Au+Bu = f (1.3.4)

where A : D (A) � X �! X and B : D (B) � X �! X are two closed linear operators

in a complex Banach space X and f is a given element of X. The solution of (1.3.4)

was represented by a Dunford integral containing the resolvents z 7�! (z � A)�1 and

z 7�! (z +B)�1 and its regularity was studied by using the interpolation spaces between

D (A) or (D (B)) and X: the main result of this method was the so called maximal

regularity, i.e., when Au and Bu belong to the same space where f is prescribed.

Let us now recall the main features of this method: Assume that both operators satisfy

the following assumptions of Da Prato-Grisvard type [11].

There exist positive numbers r, MA, MB, �A, �B such that

�A + �B < �, (1.3.5)

� (�A) � ����A := fz 2 C : jzj � r; jarg zj < � � �Ag and

8� 2 ����A,
(A+ �I)�1


L(E)

�
MA

j�j
,

(1.3.6)

� (�B) � ����B := fz 2 C : jzj � r; jarg zj < � � �Bg and

8� 2 ����B ,
(B + �I)�1


L(E)

�
MB

j�j
.

(1.3.7)

We also assume that there are constants C > 0, �0 > 0, (with �0 2 � (�A)), � and � such

that 8
>>>><

>>>>:

(i)
(A+ �0I) (A+ �I)�1

�
(A+ �0I)

�1 ; (B + �I)�1
�
L(E)

�
C

j�j1�� : j�j1+�
8� 2 � (�A) , 8� 2 � (�B) ,

(ii) 0 � � < � � 1.

(1.3.8)
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For any � 2 ]0; 1[ and 1 � p � +1, let us introduce the real Banach interpolation

spaces DA (�; p) between D (A) and E (or DB (�; p) between D (B) and E) which are

characterized by

DA (�; p) =
�
� 2 E : t 7�!

t�A (A� tI)�1 �

E
2 Lp

�

	
,

where Lp
�
denotes the space of p-integrable functions on (0;+1) with the Haar measure

dt=t. For p = +1,

DA (�;+1) =

�
� 2 E : sup

t>0

t�A (A� tI)�1 �

E
<1

�
.

Then the main result proved in Labbas-Terreni [30] is

Theorem 1.3.2 Under the assumptions (1.3.5), (1.3.6), (1.3.7) and (1.3.8), there exists

�� such that for any � � �� and for any h 2 DA (�; p), equation Aw + Bw + �w = h,

has a unique solution w 2 D (A) \ D (B) with the regularities Aw, Bw 2 DA (�; p) and

Aw 2 DB (�; p) for any � verifying � � min (�; (�� �)).

A next step is to show how this method is used to solve the heat equation in domains

with time-dependent boundaries. So, we revisite our problem given in Example (1.2.1)

and we consider the model case ' (t) = t�, with the following hypothesis
8
<

:
(i) 1=2 < � < p� 1,

(ii) p > �= (2�� 1) .

Let us introduce the following subspace of Lp (
)

Lpt2��
�
0; 1;W 2�;p

t�

�
=

�
f 2 Lp (
) :

Z 1

0

t2��p
Z t�

0

Z t�

0

jf (t; x)� f (t; x0)jp

jx� x0j2�p+1
dxdx0dt <1

�
,

then, the main result given in [32] is

Theorem 1.3.3 For given � 2 ]0; 1[ such that 0 < � <
1

2p
and � � �, and for any

f 2 Lpt2��
�
0; 1;W 2�;p

t�

�
, Problem (1.2.1) has a unique solution u 2 H1;2

p (
)

H1;2
p (
) =

�
u 2 Lp (
) : @tu; @

j
xu 2 L

p (
) ; j = 1; 2
	

with the regularities: u, @tu, @xu and @
2
xu belong to L

p
t2��

�
0; 1;W 2�;p

t�

�
.
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Proof. The principal idea to solve Problem (1.2.1) consists in transforming the par-

abolic equation in the non-cylindrical domain 
 into a variable-coe¢cient equation in a

cylindrical domain.The change of variables

(t; x) 7! (t; y) = (t; x=t�)

transforms 
 into the square Q = ]0; 1[ � ]0; 1[. Putting u (t; x) = v (t; y) and f (t; x) =

g (t; y), then Problem (1.2.1) is transformed, in Q, into the degenerate evolution problem

8
<

:
t2�@tv (t; y)� @2yv (t; y)� �t2��1y@yv (t; y) = t2�g (t; y) = h (t; y)

u=@Qr�2 = 0.

It is easy to see that f 2 Lp (
) if and only if t�=pg 2 Lp (Q), i.e., if and only if the

function h = t2�g lies in the closed subspace of Lp (Q) de�ned by

E =
�
h 2 Lp (0; 1;Lp (0; 1)) : t�2�+(�=p)h 2 Lp (0; 1;Lp (0; 1))

	
.

This space is equipped with the norm khkE =
t�2�+(�=p)h


Lp(0;1;Lp(0;1))

.

Now, it su¢ces to verify the hypothesis of the operator�s sum method and conclude

by using Theorem 1.3.2. For more details, see [32].
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